Actionneurs gyroscopiques
pour la commande d’attitude
des satellites

Version 1.0
16 février 2009

Michel Llibre

Ref. DCSD-2009_008-NOT-005-1.0
Table des matières

1 **Introduction** 5

2 **Principe des gyrodynes un et deux axes** 7

3 **Intérêt des gyrodynes par rapport aux roues à inertie** 11

4 **Propriétés générales des grappes redondantes** 15
 4.1 Préliminaire : pourquoi la redondance 15
 4.1.1 Configurations singulières relatives à une direction donnée 16
 4.1.2 Extremums du module du moment cinétique résultant en configuration singulière 17
 4.1.3 Conclusion 18
 4.2 Paramètres principaux 18
 4.2.1 La pseudo-inverse de Moore-Penrose 20
 4.2.2 Le déterminant 20
 4.2.3 Le noyau 20
 4.2.4 Le gradient du déterminant 20
 4.3 Les grappes pyramidales 21
 4.3.1 Grappe pyramidale à base polygonale régulière 21
 4.3.2 La grappe pyramidale isotrope 22
 4.4 Les singularités 22
 4.4.1 Configuration singulière 22
 4.4.2 Direction singulière 23
 4.4.3 Signature d’une singularité 23
 4.4.4 Singularités externes et internes 23
 4.4.5 Les surfaces singulières 24
 4.5 Les variétés à motricité nulle (VMN et TMN) 24
 4.6 La pré-image d’une trajectoire en moment cinétique 25
 4.7 Les trajectoires à motricité effective 25
 4.8 Les trajectoires cycliques stables (TCS) 26
 4.9 Traversabilité des singularités 27
 4.10 Topologie au voisinage d’un point singulier interne intraversable 29

5 **Les stratégies locales d’évitement des singularités** 33
 5.1 Utilisation du gradient du déterminant de YY^T 33
TABLE DES MATIÈRES

5.2 Heuristiques à base de déterminant inverse .. 35
5.3 Pseudo-inverse décalée ... 36

6 La stratégie d’évitement de Kurokawa .. 39
 6.1 Notations ... 39
 6.2 Les trois politiques de Kurokawa .. 39
 6.3 Domaine atteignable en moment cinétique .. 40
 6.4 Restriction de la jacobienne ... 41
 6.5 Obtention d’un moment cinéique quelconque donné 42
 6.5.1 Approche analytique en politique Z ... 42
 6.5.2 Inversion itérative en politique Z ... 44
 6.5.3 Extension au cas des politiques U et V 45
 6.5.4 Méthode itérative cas non isotrope .. 46
 6.6 Génération de quelques moments cinétiques particuliers 47
 6.6.1 Génération d’un moment selon O_z_0 48
 6.6.2 Génération d’un moment selon O_x_0 48
 6.6.3 Génération d’un moment selon O_y_0 49
 6.6.4 Génération d’un moment selon u_0 ... 49
 6.6.5 Génération d’un moment selon v_0 ... 50
 6.6.6 Génération d’un moment du plan horizontal $O_{x_0y_0}$ 51
 6.6.7 Les solutions parasites ... 51
 6.7 Domaines de travail sécurisés ... 52
 6.7.1 Méthode de génération du domaine de travail sécurisé 52
 6.7.2 Représentation 3D des surfaces singulières 53
 6.7.3 Repliement des surfaces singulières ... 54
 6.7.4 Volumes simplifiés sécurisés de révolution 54
 6.7.5 Modèle simplifié analytique .. 55
 6.7.6 Domaine convexe analytique .. 56
 6.7.7 Domaine de recouvrement des trois domaines 56
 6.8 Mise en œuvre de la méthode de Kurokawa ... 57
 6.8.1 Choix d’une des trois politiques ... 57
 6.8.2 Méthode de changement de politique .. 57
 6.9 Petite conclusion sur les stratégies d’évitement 59

7 Annexe .. 69
 7.1 Trajectoires cycliques stables .. 69
 7.1.1 Cas général ... 69
 7.1.2 Cas de la pyramide isotrope .. 70
 7.2 Traversabilité des singularités ... 72
 7.3 Test de la méthode du gradient ... 76
 7.4 Test des méthodes gain inverse ... 77
Chapitre 1

Introduction

Ce document présente une analyse des problèmes posés par l’utilisation des actionneurs gyroscopiques pour le pilotage d’attitude des satellites. Ces actionneurs gyroscopiques sont également appelés CMG pour Control Moment Gyro en anglais et Gyrodynes en français. Pour la commande d’attitude on en utilise plusieurs disposés selon une architecture appelée grappe de gyrodynes (CMG cluster en anglais).

Ce document détaille notamment :
— le principe des gyrodynes un et deux axes,
— l’intérêt des gyrodynes par rapport aux roues à inertie,
— les propriétés générales des grappes de gyrodynes redondantes :
 – les grappes pyramidales,
 – les trajectoires à motricité nulle ou effective,
 – les divers types de singularités,
 – la traversabilité des singularités internes
 – la topologie au voisinage d’une singularité interne,
— les stratégies d’évitement des singularités locale :
 – le gradient du déterminant,
 – les heuristiques déterminant inverse et pseudo-inverse décalée,
— et globale : stratégie de Kurokawa.

Les principaux algorithmes d’évitement de singularités sont détaillés en annexe.
Chapitre 2

Principe des gyrodynes un et deux axes

Un actionneur gyroscopique est constitué par une toupie entraînée par une motorisation interne à une vitesse de rotation propre constante très élevée dont nous supposerons l’asservissement parfait. Cette toupie est enserrée dans un carter qu’un ou deux moteurs externes peuvent faire basculer autour d’un ou deux axes de basculement.

La figure 2.1 montre le schéma de principe d’un actionneur gyroscopique 1-axe.

![Schéma de principe d’un actionneur gyroscopique 1-axe](image_url)

Figure 2.1 – Schéma de principe d’un actionneur gyroscopique 1-axe

Un moteur d’axe \vec{z} lié au bâti du satellite fait précessionner un carter contenant une toupie. L’axe \vec{z} est fixe dans le satellite. Notons σ l’angle de précession imposé par le moteur de précession. L’axe \vec{x} commun au carter et à la toupie tourne relativement au satellite à la vitesse $\dot{\sigma}\vec{z}$. Le moteur de rotation propre de la toupie entraîne celle-ci à une vitesse de rotation $\dot{\phi}\vec{x}$ relativement au carter. Si on note j le...
moment d’inertie de la toupie autour de l’axe \(\vec{x} \) son moment cinétique relativement au carter est donné par :

\[
\vec{h} = j\phi \vec{x} = h\vec{x}
\]

avec \(h = j\phi \) cte.

Le couple gyroscopique moteur résultant de ce moment cinétique est donné par :

\[
\vec{M} = \sigma\vec{z} \times \vec{h} = \sigma\vec{z} \times h\vec{x}
\]

Ce moment est transmis de la toupie au carter par les paliers notés B et B’ et du carter au bâti du satellite par les paliers notés A et A’ sur la figure 2.1. Ce moment n’est ressenti ni par le moteur de précission, ni par le moteur maintenant la vitesse de rotation propre. C’est ce qui fait l’intérêt des CMG (control moment gyro) 1-axe sur les CMG 2-axes.

La figure 2.2 montre le schéma de principe d’un actionneur gyroscopique 2-axes.

Un moteur d’axe \(\vec{z}_0 \) lié au bâti du satellite fait précissionner un cadre qui supporte un deuxième moteur d’axe \(\vec{x}_1 \) qui fait nuter une toupie dont la vitesse est maintenue constante à l’aide d’un moteur d’axe \(\vec{z}_2 \). L’axe \(\vec{z}_0 \) est fixe dans le satellite. Notons \(\sigma \) l’angle de précission imposé par le moteur de
précession et θ l’angle de nutation imposé par le moteur de nutation. L’axe \(\vec{z}_2 \) de la toupie tourne relativement au satellite à la vitesse \(\vec{\sigma}_0 + \vec{\theta}_1 \). Le moteur de rotation propre de la toupie entraîne celle-ci à une vitesse de rotation \(\vec{\phi}_2 \) relativement au carter qui la supporte. Si on note \(j \) le moment d’inertie de la toupie autour de l’axe \(\vec{z}_2 \), son moment cinétique relativement au carter est donné par :

\[
\vec{h} = j \vec{\phi}_2 = h \vec{z}_2
\]

Le couple gyroscopique moteur résultant de ce moment cinétique est donné par :

\[
\vec{M} = (\vec{\sigma}_0 + \vec{\theta}_1) \times \vec{h} = (\vec{\sigma}_0 + \vec{\theta}_1) \times h \vec{z}_2
\]

\[
\vec{M} = -h \vec{\theta} \vec{y}_2 + h \vec{\phi} \sin \theta \vec{x}_1
\]

Ce moment est transmis de la toupie au carter par les paliers notés B et B’ et du carter au cadre par les paliers notés A et A’ et du cadre au bâti du satellite par les paliers notés C et C’ sur la figure 2.1. Ce moment est orthogonal à l’axe \(\vec{x}_1 \). Le moteur de nutation n’en ressent aucun effet. Par contre le moteur de précession doit contrer la projection de \(- h \vec{\theta} \vec{y}_2 \) sur \(\vec{z}_0 \) qui est en \(\sin \theta \).

Pour que cet actionneur ait un intérêt il faut que \(\sin \theta \) soit grand en valeur absolue (sinon la partie \(h \vec{\phi} \sin \theta \vec{x}_1 \) produite par \(\vec{\phi} \) devient inexploitable), et dans ce cas le moteur de précession doit contrer une grande partie du couple produit par le moteur de nutation. En conséquence le moteur de précession doit être dimensionné pour produire l’équivalent du couple gyroscopique, ce qui est extrêmement pénalisant par rapport au CMG 1-axe qui lui n’a pas cette contrainte.
Chapitre 3

Intérêt des gyrodyynes par rapport aux roues à inertie

Considérons un satellite que l’on désire rendre mobile en rotation autour d’un axe \vec{u} passant par son centre de masse. Soit :

$$I = 100 \text{ kg} \times \text{m}^2$$

son moment d’inertie autour de cet axe. C’est par exemple un cylindre de 200 kg et de 1 m de rayon.

Considérons une commande à l’aide d’une roue à inertie de même axe \vec{u} et de moment d’inertie :

$$j = 1 \text{ kg} \times \text{m}^2$$

autour de cet axe. C’est par exemple un cylindre de 8 kg et de 0.5 m de rayon. Pour un contrôle 3 axes, la masse totale des roues à inertie représenterait 24 kg, et par exemple 35 kg avec les carter, moteurs, paliers..., soit 35 kg de motorisation en attitude pour 165 kg restant.

Considérons un rotation du satellite consistant à l’amener au bout de :

$$T = 1 \text{ seconde}$$

avec une accélération de rotation constante de :

$$\dot{\Omega}_{\text{max}} = 1 \text{ rd/s}^2$$

d’une vitesse nulle à une vitesse de :

$$\Omega_{\text{max}} = 1 \text{ rd/s}$$

Pour parvenir à cela, le moteur entraînant la roue à inertie va utiliser un couple moteur maximal :

$$C_{\text{max}} = I \dot{\Omega}_{\text{max}} = 100 \text{ N} \times \text{m}$$

Il va utiliser une puissance utile maximale de :

$$\Pi_{\text{max}} = C_{\text{max}} \Omega_{\text{max}} = 100 \text{ watts}$$

et dépenser une énergie utile :

$$E = \frac{1}{2} I \Omega_{\text{max}}^2 = 50 \text{ joules}$$

Mais dans ce mouvement la roue à inertie est accélérée avec une accélération :

$$\omega_{\text{max}} = \frac{1}{j} C_{\text{max}} = 100 \text{ rd/s}^2$$
et elle atteint une vitesse de

\[\omega_{\text{max}} = 100 \text{ rd/s} \]

Dans ce mouvement le moteur fournit une puissance maximale :

\[\pi_{\text{max}} = C_{\text{max}} \omega_{\text{max}} = 100 \times 100 = 10 \text{ kW} \]

et dépense une énergie :

\[e = \frac{1}{2} J \omega_{\text{max}}^2 = 5000 \text{ joules} \]

On dépense donc 100 \((I / J)\) plus d’énergie inutile que d’énergie utile.

Considérons une motorisation à l’aide de deux gyrodynes en ciseaux, d’axe de précession commun \(p\) orthogonal à \(\bar{u}\).

Figure 3.1 – Gyrodynes 1-axe en ciseaux

Les moments cinétiques \(\bar{h}_1\) et \(\bar{h}_2\) sont égaux et opposés et orthogonaux à \(\bar{u}\) à l’instant initial. Pposons :

\[h = |\bar{h}_1| = |\bar{h}_2| = \text{cte} \]

Supposons que \(\Omega_{\text{max}}\) soit atteint en faisant précessionner les deux gyrodynes en sens inverse (de manière à les aligner vers \(\bar{u}\)), en une seconde, en faisant passer la somme \(\bar{h} = \bar{h}_1 + \bar{h}_2\) de 0 pour \(\sigma = 0\) à \(\bar{h} = \bar{h}_1 + \bar{h}_2 = I\Omega_{\text{max}}\bar{u}\) pour \(\sigma_{\text{max}} = \frac{\pi}{4}\) rd. Il en résulte que :

\[2h \sin \sigma_{\text{max}} = h\sqrt{2} = I\Omega_{\text{max}} = 100 \]

soit :

\[h = \frac{100}{\sqrt{2}} = 70.7 \text{ Nms} \]
ce qui peut être réalisé avec une toupie ayant un moment d’inertie :

\[j_f = \frac{1}{10\sqrt{2}} = 0.0707 \text{ kg} \times \text{m}^2 \]

tournant à 1000 rd/s. Une toupie de ce type peut être réalisée avec une couronne de 0.266 m de rayon et de masse 1 kg, soit 2 kg pour les deux toupies. On constate donc que des performances identiques peuvent être obtenues avec des gyrodyynes de masse et d’encombrement largement inférieur à celui des roues à inertie. Les gyrodyynes présentent donc un léger avantage au niveau masse et encombrement par rapport aux roues à inertie.

Les gyrodyynes présentent donc un léger avantage au niveau masse et encombrement par rapport aux roues à inertie.

Supposons que la rotation en précession soit de la forme :

\[\sigma = \frac{\pi}{4} t^2 (3 - 2t) \]

\[\dot{\sigma} = \frac{6\pi}{4} (t - 1) \]

\[\ddot{\sigma} = \frac{6\pi}{4} (1 - 2t) \]

\(\sigma \) passe bien de 0 à \(\frac{\pi}{4} \) en 1 seconde, en partant d’une vitesse nulle, pour arriver en \(\frac{\pi}{4} \) avec une vitesse nulle.

Supposons que le moment d’inertie en précession de l’ensemble toupie+carter soit de l’ordre de \(j_p = 0.08 \text{ kg} \times \text{m}^2 \) (légerement supérieur à \(j_f \)). Le couple développé pour faire précessionner un gyrodyne est donné par :

\[c_p = j_p \ddot{\sigma} = 0.08 \times \frac{6\pi}{4} (1 - 2t) \]

Son maximum atteint pour \(t = 0 \) et \(t = 1 \) s vaut :

\[c_{p_{\text{max}}} = 0.377 \text{ N} \times \text{m} \]

La puissance dépensée pour faire précessionner les gyrodyynes est :

\[p = j_p \dot{\sigma} \dot{\sigma} = 0.08 \times \frac{36\pi^2}{16} t (t - 1) (1 - 2t) \]

Elle passe par un maximum qui vaut :

\[p_{\text{max}} = 0.17 \text{ watts} \]

pour \(t = 0.788 \) s. Comme cette puissance est d’abord négative, puis positive, son intégrale est nulle sur l’horizon 0-1 seconde. Prenons pour énergie dépensée l’intégrale de sa valeur absolue. Il en résulte :

\[e = \int_0^1 |p| \, dt = 0.11 \text{ joule} \]

On voit donc que la puissance et l’énergie dépensée pour faire précessionner les toupies sont négligeables, ce qui laisserait supposer un rendement supérieur à 1. En fait, il n’en est rien car la vitesse de rotation \(-\Omega \vec{u} \) du satellite induit un moment gyroscopique résistant autour des axes de précession donné par :

\[C_r = -\Omega \vec{u} \times \vec{h} = \hbar \Omega \cos \sigma \]

pour le premier gyrodyne et l’opposé pour le deuxième.

Or :

\[I\Omega = 2\hbar \sin \sigma \]
d’où :

\[C_r = \frac{h^2}{I} \sin 2\sigma \]

atteint un maximum :

\[C_{r_{\text{max}}} = 25 \text{ N} \times \text{m} \]

pour \(t = 1 \) seconde lorsque \(\sigma = \frac{\pi}{4} \). Les couples nécessaires pour accélérer les carters sont négligeables devant ces couples résistants gyroscopiques, et les grands principes de la mécanique sont respectés : les couples résistant font qu’on dépense légèrement plus d’énergie inutile (pour faire précessionner les toupies) que d’énergie utile (pour faire tourner le satellite).

Pour que les gyrodyne soient efficaces, il faut que l’angle de précession \(\sigma \) n’approche pas de \(\frac{\pi}{2} \) qui correspond au moment cinétique maximal que peut produire le système (ce qui explique la valeur \(\sigma_{\text{max}} = \frac{\pi}{4} \) arbitrairement choisie). Si cette condition est respectée leur rendement reste voisin de 50% (autant d’énergie utile que d’énergie inutile dans l’énergie totale dépensée). \textit{Ils présentent donc, au niveau énergétique, un avantage considérable sur les roues à inertie.}
Chapitre 4

Propriétés générales des grappes redondantes

Nous présentons ici ces résultats théoriques dans le formalisme du calcul matriciel ordinaire [3].

4.1 Préliminaire : pourquoi la redondance

Nous considérons une structure symétrique à trois gyrodynes dont les axes de précession \(z_1 \), \(z_2 \) et \(z_3 \) sont respectivement dirigés selon les 3 vecteurs de base \(z_0 \), \(x_0 \) et \(y_0 \). En configuration origine \((\sigma_i = 0) \), les axes porteurs des moments cinétiques \(x_1 \), \(x_2 \) et \(x_3 \) sont respectivement dirigés selon les 3 vecteurs de base \(x_0 \), \(y_0 \) et \(z_0 \). Une configuration quelconque est représentée sur la figure 4.1.

Avec cette disposition le moment cinétique résultant réduit est donné par :

\[
h = \begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{pmatrix} \cos \sigma_1 + \sin \sigma_3 \\ \cos \sigma_2 + \sin \sigma_1 \\ \cos \sigma_3 + \sin \sigma_2 \end{pmatrix}
\]

et la matrice jacobienne de cette transformation est donnée par :

\[
\frac{\partial h}{\partial \sigma} = \begin{pmatrix} -\sin \sigma_1 & 0 & \cos \sigma_3 \\ \cos \sigma_1 & -\sin \sigma_2 & 0 \\ 0 & \cos \sigma_2 & -\sin \sigma_3 \end{pmatrix}
\]

Le jacobien de la transformation est donné par :

\[
\left| \frac{\partial h}{\partial \sigma} \right| = \cos \sigma_1 \cos \sigma_2 \cos \sigma_3 - \sin \sigma_1 \sin \sigma_2 \sin \sigma_3
\]

Les configurations singulières sont ainsi données par :

\[
\tan \sigma_1 \tan \sigma_2 \tan \sigma_3 = 1
\]
4.1.1 Configurations singulières relatives à une direction donnée

Soit une direction quelconque de vecteur unitaire :

\[\mathbf{u} = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \]

Le dispositif ne pourra produire de couple dans cette direction si les vecteurs colonnes \(\mathbf{y}_1, \mathbf{y}_2 \) et \(\mathbf{y}_3 \) de la matrice jacobienne sont tous trois orthogonaux à \(\mathbf{u} \), ce qui sera le cas lorsque les directions \(\mathbf{x}_1, \mathbf{x}_2 \) et \(\mathbf{x}_3 \) sont respectivement alignées avec les projections du vecteur \(\mathbf{u} \) dans les plans orthogonaux aux trois directions \(\mathbf{z}_1, \mathbf{z}_2 \) et \(\mathbf{z}_3 \). Il en résulte que les lignes trigonométriques des angles de précession en configurations singulières sont données en fonction des cosinus directeurs de la direction singulière par :

\[
\begin{align*}
\cos \sigma_1^s &= \varepsilon_1 \frac{\alpha}{\sqrt{1 - \gamma^2}} & \sin \sigma_1^s &= \varepsilon_1 \frac{\beta}{\sqrt{1 - \gamma^2}} \\
\cos \sigma_2^s &= \varepsilon_2 \frac{\beta}{\sqrt{1 - \alpha^2}} & \sin \sigma_2^s &= \varepsilon_2 \frac{\gamma}{\sqrt{1 - \alpha^2}} \\
\cos \sigma_3^s &= \varepsilon_3 \frac{\gamma}{\sqrt{1 - \beta^2}} & \sin \sigma_3^s &= \varepsilon_3 \frac{\alpha}{\sqrt{1 - \beta^2}}
\end{align*}
\]
 où $\varepsilon_i = \pm 1$ suivant le signe choisi pour $\langle \mathbf{x}_i, \mathbf{u} \rangle$.

Dans tout ce qui suit, l’exposant s signifie que la configuration considérée est singulière.

Pour chaque direction \mathbf{u} il y a 8 configurations singulières ($\sigma_1^s, \sigma_2^s, \sigma_3^s$) de signature $\varepsilon_1\varepsilon_2\varepsilon_3$ (en distinguant les sens \mathbf{u} et $-\mathbf{u}$).

4.1.2 Extremums du module du moment cinétique résultant en configuration singulière

Le carré du module de \mathbf{h} est donné par :

$$|\mathbf{h}|^2 = 3 + 2(\cos \sigma_1 \sin \sigma_3 + \cos \sigma_2 \sin \sigma_1 + \cos \sigma_3 \sin \sigma_2)$$

Ecrivons que le gradient de $|\mathbf{h}|^2$ par rapport aux angles de précession est nul aux extréums. Il vient :

$$\frac{1}{2} \frac{\partial |\mathbf{h}|^2}{\partial \sigma_1} = -\sin \sigma_1 \sin \sigma_3 + \cos \sigma_2 \cos \sigma_1 = 0$$

$$\frac{1}{2} \frac{\partial |\mathbf{h}|^2}{\partial \sigma_2} = -\sin \sigma_2 \sin \sigma_1 + \cos \sigma_3 \cos \sigma_2 = 0$$

$$\frac{1}{2} \frac{\partial |\mathbf{h}|^2}{\partial \sigma_3} = -\sin \sigma_3 \sin \sigma_2 + \cos \sigma_1 \cos \sigma_3 = 0$$

En considérant les cas où tous les sinus et cosinus sont non nuls, on obtient :

$$\cos^2 \sigma_1 = \sin^2 \sigma_3$$

$$\cos^2 \sigma_2 = \sin^2 \sigma_1$$

$$\cos^2 \sigma_3 = \sin^2 \sigma_2$$

En reportant les lignes trigonométriques des configurations singulières, il vient :

$$\frac{\alpha^2}{1 - \gamma^2} = \frac{\alpha^2}{1 - \beta^2}$$

$$\frac{\beta^2}{1 - \alpha^2} = \frac{\beta^2}{1 - \gamma^2}$$

$$\frac{\gamma^2}{1 - \beta^2} = \frac{\gamma^2}{1 - \alpha^2}$$

soit :

$$\alpha^2 = \beta^2 = \gamma^2 = \frac{1}{3}$$

Ceci conduit par exemple à la configuration singulière $(-\frac{3\pi}{4}, -\frac{3\pi}{4}, -\frac{3\pi}{4})$ relative à la direction singulière $\mathbf{u} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^T$ pour laquelle $|\mathbf{h}|^2$ passe par un maximum égal à 6, qui est d’ailleurs un maximum global pour $|\mathbf{h}|^2$.

Si on considère un sinus ou cosinus nul, par exemple $\sin \sigma_1 = 0$, il vient :

$$\sin \sigma_1 = 0 \rightarrow \cos \sigma_2 = 0 \rightarrow \tan \sigma_3 = 1 \times \text{signe}(\cos \sigma_1 / \sin \sigma_2)$$

On obtient ainsi, à titre d’exemple, la configuration singulière $(0, \frac{\pi}{2}, -\frac{3\pi}{4})$ relative à la direction singulière $\mathbf{u} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^T$ pour laquelle $|\mathbf{h}|^2$ passe par un minimum égal à $3 - 2\sqrt{2}$. Le minimum global $|\mathbf{h}|^2 = 0$ ne peut être atteint en configuration singulière.
Finalement, $|\mathbf{h}|$ présente 8 minimums et 8 maximums qui valent :

$$
|\mathbf{h}|_{\text{min}} = \sqrt{2} - 1 \simeq 0.414 \\
|\mathbf{h}|_{\text{max}} = \sqrt{6} \simeq 2.45
$$

La figure 4.2 montre les deux configurations singulières citées à titre d’exemple.

4.1.3 Conclusion

Pour $|\mathbf{h}| < 0.414$ il n’y a pas de configuration singulière de la disposition en trièdre tri-rectangle. Étant donné que la capacité maximale en moment cinétique vaut $|\mathbf{h}| \simeq 2.45$, on voit que pour une distribution isotrope des moments désirés on ne peut utiliser que $\frac{0.414}{2.45} \simeq 16.9\%$ de la capacité maximale en moment cinétique pour être sûr de ne pas tomber sur une singularité.

Ainsi dans le cas d’une commande en attitude isotrope, si on veut être certain de ne jamais rencontrer de singularité, il faut limiter les couples de commande à 17% de la capacité maximale en couple du système, ce qui enlève beaucoup d’intérêt à cette structure.

4.2 Paramètres principaux

Considérons une grappe constituée de $N > 3$ gyrodynes d’axes de précession de direction fixes \tilde{z}_i relativement au satellite (pour $i = 1$ à N). Notons \tilde{x}_i les axes de rotation propre des toupies qui tournent dans des plans fixes relativement au satellite, orthogonaux aux axes \tilde{z}_i.

Notons h le module du moment cinétique, supposé constant, d’une toupie.

Notons σ_i l’angle de rotation de l’axe \tilde{x}_i autour de l’axe \tilde{z}_i, relativement à sa position initiale \tilde{x}_{i0} (à laquelle correspondant la position initiale $\tilde{y}_{i0} = \tilde{z}_i \times \tilde{x}_{i0}$).
Le moment cinétique résultant des toupies est donné par :
\[
\vec{h} = h \sum_{i=1}^{N} \vec{x}_i
\]

Du point de vue du pilotage, on peut considérer que c’est l’opposé du moment cinétique communiqué au satellite.

Pour simplifier les notations, nous considérerons dans ce qui suit des moments réduits (en ignorant le facteur scalaire \(h\), ce qui revient à considérer des toupies de 1 Nms), **sans préciser à chaque fois le mot réduit**, qui sera donc systématiquement sous-entendu, d’où :
\[
\vec{h} = \sum_{i=1}^{N} \vec{x}_i
\]

Le moment dynamique produit par la variation du moment cinétique des toupies s’écrit :
\[
\vec{m} = \frac{d}{dt} \vec{h} = \frac{d}{dt} \vec{h} + \vec{\Omega} \times \vec{h}
\]

où \(\frac{d}{dt/0}\) est la dérivation relativement au repère inertiel, \(\frac{d}{dt/s}\) la dérivation relativement à un repère lié au satellite et \(\vec{\Omega}\) est la vitesse du satellite relativement au repère inertiel. Le terme \(\vec{\Omega} \times \vec{h}\) est un terme perturbateur qui peut être pris en compte par pilotage dans un terme de pré-compensation (feed-forward). Le terme \(\frac{d}{dt/s}\vec{h}\) est le couple gyroscopique moteur produit par les gyrodyres. C’est uniquement ce terme que nous allons considérer, en **effaçant toutes les dérivations relativement à un repère lié au satellite**, sans plus préciser le /s. Notons (avec \(h = 1\)) :
\[
\vec{m} = \frac{d}{dt} \vec{h} = \sum_{i=1}^{N} \vec{x}_i = \sum_{i=1}^{N} \vec{x}_i \dot{\sigma}_i
\]
soit :
\[
\vec{m} = \sum_{i=1}^{N} \vec{y}_i \dot{\sigma}_i
\]
car :
\[
\frac{d\vec{x}_i}{d\sigma_i} = \dot{\sigma}_i \dot{\vec{z}}_i \times \vec{x}_i = \dot{\sigma}_i \vec{y}_i
\]

Notons \(x_0, y_0\) et \(z_0\), les 3 vecteurs de base du repère fixe lié au satellite dans lequel sont exprimées toutes les composantes des autres vecteurs.

Notons \(x, y\) et \(z\) les matrices colonnes des composantes des vecteurs \(\vec{x}_i, \vec{y}_i\) et \(\vec{z}_i\) dans cette base (les \(z_i\) sont constants) et posons :
\[
X = \begin{pmatrix} x_1 & x_2 & \cdots & x_N \end{pmatrix} \\
Y = \begin{pmatrix} y_1 & y_2 & \cdots & y_N \end{pmatrix} \\
\dot{\sigma} = \begin{pmatrix} \dot{\sigma}_1 \\
\dot{\sigma}_2 \\
\vdots \\
\dot{\sigma}_N \end{pmatrix} \\
1 = \begin{pmatrix} 1 \\
1 \\
\vdots \\
1 \end{pmatrix}
\]

Notons \(h\) et \(m\) les matrices colonnes des composantes des vecteurs \(\vec{h}\) et \(\vec{m}\) dans cette même base. Il vient :
\[
h = X1 \\
m = Y\dot{\sigma}
\]
Remarque : En notant \(h(\sigma) \) le moment cinétique résultant, pour mettre en évidence sa dépendance relativement à la configuration \(\sigma \), la relation :
\[
m = \frac{d}{dt} h(\sigma) = \frac{d}{d\sigma} \dot{\sigma} = Y \dot{\sigma}
\]
montre que la matrice \(Y \) est la matrice jacobienne de la transformation \(h(\sigma) \) qui établit une correspondance entre l’espace de configuration \(\Sigma^N \) (de type \(T^N \) hyper-tore de dimension \(N \)) des gyrodyres et l’espace des moments cinétiques résultants des toupies \(\mathbb{H}^3 \) (de type \(\mathbb{R}^3 \) simple).

4.2.1 La pseudo-inverse de Moore-Penrose

Notons \(Y^\dagger \) la pseudo-inverse de Moore-Penrose de \(Y \) définie par :
\[
Y^\dagger = Y^T (YY^T)^{-1}
\]
lorsque \(Y \) est de rang plein (c’est-à-dire de rang 3).

4.2.2 Le déterminant

Le déterminant de \(YY^T \) s’obtient par la formule de Binet-Cauchy :
\[
\Delta = \det (YY^T) = \sum_{i<j<k} |y_i y_j y_k|^2 = \sum_{i<j<k} (y_i \times (y_j \times y_k))^2
\]
Nous poserons également :
\[
d = \sqrt{\Delta} = \sqrt{\det(YY^T)}
\]

4.2.3 Le noyau

Dans le cas \(N = 4 \), le noyau de \(Y \) est de dimension 1 en configuration régulière. Nous noterons :
\[
N = \begin{pmatrix}
|y_2 y_3 y_4| \\
-|y_1 y_3 y_4| \\
|y_1 y_2 y_4| \\
-|y_1 y_2 y_3|
\end{pmatrix}
\]
ses composantes non normées, et en vérifiant que :
\[
d^2 = \Delta = N^T N = ||N||^2
\]
ous noterons :
\[
n = \frac{1}{d} N
\]
le vecteur unitaire du noyau (dont le sens est sans signification).

4.2.4 Le gradient du déterminant

Le gradient du déterminant (\(\Delta \) ou \(d \)) relativement à la configuration \(\sigma \) est donné par :
\[
\text{grad}_\sigma \Delta = -2\Delta \text{diag} \left(Y^\dagger X\right)
\]
\[
\text{grad}_\sigma d = -d \text{diag} \left(Y^\dagger X\right)
\]
avec :
\[
\text{grad}_\sigma \Delta = 2d \text{grad}_\sigma d
\]
4.3 Les grappes pyramidales

4.3.1 Grappe pyramidale à base polygonale régulière

Les grappes redondantes les plus étudiées ont une disposition de type pyramidal à base polygonale régulière. Les directions des axes de précession z_i sont orthogonales aux faces de la pyramide. La figure 4.3 représente une de ces dispositions dans le cas $N = 4$ (base carrée). Pour cette disposition pyramidale qui semble avoir la faveur des industriels, on a :

\[
x_1 = \begin{pmatrix} -a \sin \sigma_1 \\ \cos \sigma_1 \\ b \sin \sigma_1 \end{pmatrix} \quad x_2 = \begin{pmatrix} -\cos \sigma_2 \\ -a \sin \sigma_2 \\ b \sin \sigma_2 \end{pmatrix} \quad x_3 = \begin{pmatrix} a \sin \sigma_3 \\ -\cos \sigma_3 \\ b \sin \sigma_3 \end{pmatrix} \quad x_4 = \begin{pmatrix} \cos \sigma_4 \\ a \sin \sigma_4 \\ b \sin \sigma_4 \end{pmatrix}
\]

\[
y_1 = \begin{pmatrix} -a \cos \sigma_1 \\ \sin \sigma_1 \\ b \cos \sigma_1 \end{pmatrix} \quad y_2 = \begin{pmatrix} \sin \sigma_2 \\ -a \cos \sigma_2 \\ b \cos \sigma_2 \end{pmatrix} \quad y_3 = \begin{pmatrix} a \cos \sigma_3 \\ \sin \sigma_3 \\ b \cos \sigma_3 \end{pmatrix} \quad y_4 = \begin{pmatrix} -\sin \sigma_4 \\ a \cos \sigma_4 \\ b \cos \sigma_4 \end{pmatrix}
\]

\[
z_1 = \begin{pmatrix} b \\ 0 \\ a \end{pmatrix} \quad z_2 = \begin{pmatrix} 0 \\ b \\ a \end{pmatrix} \quad z_3 = \begin{pmatrix} -b \\ 0 \\ a \end{pmatrix} \quad z_4 = \begin{pmatrix} 0 \\ -b \\ a \end{pmatrix}
\]

avec :

\[
a = \cos \beta \quad , \quad b = \sin \beta
\]
où β est l’angle fait par les \vec{z}_i avec \vec{z}_0 qui est aussi l’angle à la base de la pyramide (angle entre le plan horizontal et la ligne de plus grande pente d’une face):

$$\cos \beta = \langle \vec{z}_i \cdot \vec{z}_0 \rangle$$

Les produits scalaires entre les axes de précessions (cosinus de leur angle) valent a^2 dans le cas d’axes adjacents ($\vec{x}_1^T \vec{x}_2 = \vec{x}_2^T \vec{x}_3 = \vec{x}_3^T \vec{x}_4 = \vec{x}_4^T \vec{x}_1 = a^2$) et $a^2 - b^2$ dans le cas d’axes opposés ($\vec{x}_1^T \vec{x}_3 = \vec{x}_2^T \vec{x}_4 = a^2 - b^2$).

4.3.2 La grappe pyramidale isotrope

Une disposition isotrope est telle ces produits scalaires sont tous égaux en valeur absolue. Autrement dit elle est telle que la direction de \vec{z}_i fait le même angle (à π près) avec tous les autres axes de précession \vec{z}_j, quel que soit $j \neq i$. Il en résulte que $a^2 = \pm (a^2 - b^2)$ avec $a^2 + b^2 = 1$. En éliminant la solution singulière où tous les \vec{z}_i sont alignés avec \vec{z}_0, il reste la solution :

$$a = \cos \beta = 1/\sqrt{3}, \quad b = \sin \beta = \sqrt{2/3}$$

qui correspond à la grappe pyramidale isotrope dont les faces sont des triangles équilatéraux. L’angle à la base β vaut :

$$\beta = \arccos \frac{1}{\sqrt{3}} = 54^\circ, 7356$$

Le demi-angle au sommet (entre la verticale et une ligne de plus grande pente d’une face) vaut $35^\circ, 2644$ et l’angle au sommet vaut $70^\circ, 5288$.

Cette disposition pyramidale isotrope est parfois improprement appelée disposition tétraédrique car les directions des \vec{z}_i sont parallèles à celles des diagonales d’un cube. Sur la figure 4.3, nous avons également fait figurer les vecteurs unitaires $\vec{u}_0 = (\vec{x}_0 + \vec{y}_0)/\sqrt{2}$ et $\vec{v}_0 = (-\vec{x}_0 + \vec{y}_0)/\sqrt{2}$ qui sont la première et deuxième bissectrices du dièdre (\vec{x}_0, \vec{y}_0). Les directions \vec{u}_0, \vec{v}_0 et \vec{k}_0 sont les normales aux faces du cube ayant les \vec{z}_i parallèles à ses diagonales.

Remarque : Pour une disposition de type pyramidale, à base non ponctuelle, le rang des matrices X et Y est toujours supérieur à 1. En effet, pour que le rang de la matrice X soit égal à 1, il faut que tous les \vec{x}_i soient alignés. Or ces \vec{x}_i appartiennent chacun à une face de la pyramide. Si deux \vec{x}_i sont alignés, ils sont parallèles à l’intersection de ces 2 faces. S’ils sont tous alignés, cela suppose que toutes les arêtes de la pyramide ont la même direction, ce qui n’est possible que si la base est réduite à un point (même raisonnement pour les \vec{y}_i).

4.4 Les singularités

4.4.1 Configuration singulière

On dit que la grappe est dans une configuration singuliére σ' quand pour cette configuration, il existe une direction \vec{u} telle que quel que soit $\vec{\sigma}$, le moment dynamique produit \vec{m} est toujours orthogonal à \vec{u}. Autrement dit, on ne peut trouver de $\vec{\sigma}$ tel que le produit scalaire $\langle \vec{u} \cdot \vec{m} \rangle$ soit non nul. Or, pour que :

$$\langle \vec{u} \cdot \vec{m} \rangle = u^T m = u^T Y \vec{\sigma}$$

soit nul $\forall \vec{\sigma}$, il faut et il suffit que :

$$u^T Y = 0$$
4.4 LES SINGULARITÉS

4.4.2 Direction singulière

La grappe est en configuration singulière lorsque les N vecteurs \vec{y}_i sont coplanaires, dans le plan orthogonal au vecteur \vec{u}.

Dans cette configuration le rang de \mathbf{Y} devient égal à 2 (on a vu qu’il était toujours supérieur à 1). Le système $\mathbf{m} = \mathbf{Y} \dot{\mathbf{q}}$ n’a pas de solution pour tout \mathbf{m} tel que $\mathbf{u}^T \mathbf{m} \neq 0$. Une tentative de réalisation de ce moment dynamique va se traduire par des $\dot{\sigma}_i$ qui vont tendre vers l’infini. La direction du vecteur \vec{u} est dite direction singulière.

En dehors d’une configuration singulière, on peut se poser la question de savoir, dans quelle direction \vec{u} il est le plus difficile de réaliser un moment dynamique. C’est la direction la plus mal engendrée par les \vec{y}_i. Au sens des moindres carrés c’est celle qui minimise le scalaire :

$$s = \sum_{i=1}^{N} (\mathbf{u}^T \mathbf{y}_i)^2 = \mathbf{u}^T \mathbf{Y} \mathbf{Y}^T \mathbf{u}$$

C’est donc la direction singulière associée à la plus petite valeur singulière de la matrice \mathbf{Y}. C’est également vrai en configuration singulière, et dans ce cas la plus petite valeur singulière est nulle.

Remarque importante : $\text{trace} (\mathbf{Y} \mathbf{Y}^T) = \sum_{i=1}^{N} \| \mathbf{y}_i \|^2 = N = \text{cte}$. La somme des valeurs singulières est constante. Vouloir en maximiser une va se traduire par la minimisation des autres. Vouloir maximiser la production de couple dans une direction peut se traduire par un mouvement vers une valeur singulière relative à une autre direction.

4.4.3 Signature d’une singularité

Pour une direction donnée quelconque \vec{u}, si on aligne les N vecteurs \vec{y}_i avec $\vec{z}_i \times \vec{u}$, tous les \vec{y}_i sont orthogonaux à \vec{u} ce qui fait de cette configuration une configuration singulière. Pour une direction donnée quelconque \vec{u}, il y a donc 2^N configurations singulières.

Notons ε_i le symbole valant $+1$ si \vec{y}_i est de même sens que $\vec{z}_i \times \vec{u}$ et valant -1 si \vec{y}_i est de sens contraire. Lorsque ε_i vaut $+1$, la projection de \vec{u} dans le plan (\vec{x}_i, \vec{y}_i) est dans le sens de \vec{x}_i, et elle est de sens opposé lorsque ε_i vaut -1. Autrement dit :

$$\varepsilon_i = \text{signe} (\mathbf{u}^T \mathbf{x}_i)$$

La collection des signes de $(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_N)$ est appelée la signature de la configuration singulière.

4.4.4 Singularités externes et internes

Les configurations singulières de signature $(+ + \ldots +)$ ou de signature $(- - \ldots -)$, c’est-à-dire sans changement de signe, sont dites externes car elles correspondent à un alignement maximal des moments cinétiques des toupies selon la direction \vec{u} (dans le même sens ou en sens inverse). Elles correspondent donc à des extrênums du module de \vec{H}.

Si la signature présente un ou plusieurs changement de signe, on dit que la configuration singulière est interne.

La configuration singulière σ^+ relative à la direction \vec{u}, de $(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_N)$ a pour composantes :

$$\sigma_i^+ = \text{atan2} (\mathbf{u}^T \mathbf{y}_{i0}, \mathbf{u}^T \mathbf{x}_{i0}) + (1 - \varepsilon_i) \frac{\pi}{2}$$
4.4.5 Les surfaces singulières

Si on fait varier continûment \vec{u} pour générer les 4π stéradians de la sphère unité de \mathbb{R}^3, les 2^N configurations singulières σ^i associées à \vec{u} génèrent 2^N surfaces singulières Σ^i de dimension 2 dans Σ^N. Mais comme lorsque \vec{u} passe continûment d’une direction à son opposée, on passe continûment de la surface associée à la signature $(\epsilon_1, \epsilon_2, \ldots, \epsilon_N)$ à la surface associée à la signature $(-\epsilon_1, -\epsilon_2, \ldots, -\epsilon_N)$, il n’y a en fait que 2^{N-1} surfaces singulières Σ^i différentes. A chacune de ces surfaces singulières Σ^i dans Σ^N, la relation $h^i = \sum_{i=1}^N x_i (\sigma_i^j)$ fait correspondre une surface singulière \mathcal{H}^i dans \mathbb{H}^3 parcourue par le moment cinétique h^i lorsque \vec{u} parcourt la sphère unité.

Remarque 1 : Pour \vec{u} parallèle à n’importe quel des N vecteurs fixes \vec{z}_i, les valeurs ϵ_i et σ_i^j ne sont pas définies. Les surfaces singulières Σ^i et \mathcal{H}^i ne sont donc pas définies pour ces directions. En fait les deux valeurs $\epsilon_i = \pm$ conviennent quelle que soit la valeur de σ_i^j. Il en résulte, en particulier, que les surfaces singulières externes \mathcal{H}^i sont pourvues de $2N$ trous circulaires qui constituent des connexions entre elles, puisque, par exemple pour \vec{u} parallèle à \vec{z}_i, le cercle :

$$h^i = x_1 (\sigma_1^j) + \sum_{i=2}^N x_i (\sigma_i^j) \text{ pour } \sigma_i^j \in (0, 2\pi)$$

appartient aux surfaces singulières de signature $(++---)$ et $(-++---)$.

Remarque 2 : En tout point la normale à la surface singulière \mathcal{H}^i est selon la direction singulière \vec{u} associée à σ^i, ce qui est évident puisque :

$$dh = Y \sigma_i - u^T dh = 0$$

dh est orthogonal à u en configuration singulière.

4.5 Les variétés à motricité nulle (VMN et TMN)

Une variété à motricité nulle est la pré-image dans l’espace de configuration Σ^N d’un point de l’espace \mathbb{H}^3 des moments cinétiques. Elle est donc de dimension $N - 3$. Ce une trajectoire dans le cas $N = 4$, une surface dans le cas $N = 2$, etc...

En une configuration régulière σ le noyau $\ker (Y)$ de la matrice Y est de dimension $N - 3$.

Dans le cas particulier $N = 4$, $\ker (Y)$ a une seule vecteur de base de direction n. La trajectoire intégrale de $\sigma = \lambda n$, avec λ scalaire quelconque, est une trajectoire à motricité nulle (TMN). A l’ensemble des configurations σ situées sur cette trajectoire correspond un vecteur $H(\sigma)$ unique (constant en module et direction) de \mathbb{H}^3.

Pour $N > 4$, $\ker (Y)$ a $N - 3$ vecteurs de base de direction n_1, n_2, \ldots, n_{N-3}. La variété intégrale de $\sigma = N\lambda n$, avec $N = (n_1, n_2, \ldots, n_{N-3})$ et λ vecteur quelconque de dimension $N - 3$, est une variété à motricité nulle (VMN) qui est la pré-image dans l’espace de configuration Σ^N d’un moment cinétique $h(\sigma)$ donné.

Une TMN (ou une VMN) peut être constituée de plusieurs parties que nous appellerons des *orbites*. Les points d’intersection des orbites sont des points singuliers (puisqu’en ces points la dimension du noyau augmente).

On note TMN_0 les trajectoires à motricité nulle qui correspondent à $h = 0$.

Dans le cas particulier $N = 4$ de la grappe isotrope, la TMN$_0$ comporte 4 orbites. Leurs équations et leurs points singuliers (intersections de deux d’entre elles) sont données dans le tableau suivant :

1. qui sont également les surfaces singulières associées aux signatures $(----)$ et $(+++--)$.
où \(\alpha \) varie de 0 à \(2\pi \).

Les TMN_{0A}, TMN_{0B} et TMN_{0C} n’ont pas de point commun. Par contre elles coupent toutes les 3 la TMN_{00} en deux points singuliers :

\[
\begin{align*}
\text{TMN}_{0A} \cap \text{TMN}_{00} & = \left(\pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{\pi}{2} \right) \\
\text{TMN}_{0B} \cap \text{TMN}_{00} & = \left(-\frac{\pi}{6}, \frac{\pi}{6}, -\frac{\pi}{6}, \frac{\pi}{6} \right) \text{ et } \left(\pm \frac{\pi}{6}, \pm \frac{\pi}{6}, \pm \frac{\pi}{6}, \pm \frac{\pi}{6} \right) \\
\text{TMN}_{0C} \cap \text{TMN}_{00} & = \left(\frac{\pi}{6}, -\frac{\pi}{6}, -\frac{\pi}{6}, \frac{\pi}{6} \right) \text{ et } \left(\pm \frac{\pi}{6}, \pm \frac{\pi}{6}, \pm \frac{\pi}{6}, \pm \frac{\pi}{6} \right)
\end{align*}
\]

Sur la TMN_{00} le déterminant \(\Delta \) de \(YY^T \) possède 6 minimums à 0 qui encadrent 6 maximums à \(16b^2a^4 \) (\(= 1.1852 \) en isotrope) pour \(\sigma_1 = 0, \pi, \pm \frac{\pi}{3} \) et \(\pm \frac{\pi}{6} \).

Sur la TMN_{0A} le déterminant \(\Delta \) de \(YY^T \) possède 2 minimums à 0 (pour \(\sigma_1 = \pm \frac{\pi}{2} \) et 2 minimums à \(16b^2a^4 \) (\(= 1.1852 \) en isotrope) qui encadrent 4 maximums à 2 \((a^2 + 1)^2 b^2 \) (\(= 2.3704 \) en isotrope) pour \(\sigma_1 = \pm \frac{\pi}{4} \) et \(\pm \frac{\pi}{6} \). Pour les TMN_{0B} et TMN_{0C}, ces valeurs s’obtiennent respectivement pour \(\sigma_1 \) décalée de \(\frac{\pi}{3} \) et \(\frac{\pi}{6} \).

Dans l’espace de configuration considéré comme un hyper-tore (en identifiant \(\alpha \) et \(\alpha + 2k\pi \), quelque soit \(k \) entier) ces 4 orbites sont 4 trajectoires fermées de même longueur 4\(\pi \) et de longueur totale 16\(\pi \).

Dans un espace de configuration de type cartésien, ces 4 orbites sont 4 segment rectilignes de longueur 4\(\pi \) et de longueur totale 16\(\pi \) (si on limite la variation de chaque angle à un intervalle d’amplitude 2\(\pi \)). La TMN_{00} correspond à un noyau de direction \(n^T = (1, -1, 1, -1) \), la TMN_{0A} correspond à un noyau de direction \(n^T = (1, 1, 1, 1) \), la TMN_{0B} correspond à un noyau de direction \(n^T = (1, 1, -1, -1) \) et la TMN_{0C} correspond à un noyau de direction \(n^T = (1, -1, -1, 1) \). Ces 4 vecteurs constituent une base orthonormale de \(\mathbb{R}^4 \).

Remarque : Dans le cas non isotrope, mais régulier à base carrée, les deux premières (TMN_{00} et TMN_{0A}) sont toujours des orbites de la TMN_{00}, par contre pour les deux dernières seule la composante z de \(h \) est nulle, et les deux autres varient d’autant plus que l’angle à la base de la pyramide s’écarte de la valeur isotropique \(\beta = 54°, 7356 \).

4.6 La pré-image d’une trajectoire en moment cinétique

Une trajectoire quelconque \(h(t) \) décrite par \(h \) dans \(\mathbb{H}^3 \) a pour pré-image \(\mathcal{H}^{N-2} \) dans \(\Sigma^N \) une variété (non différentiable a priori) de dimension \(N - 2 \) engendrée par le glissement des VMN (de dimension \(N - 1 \)) associées à chaque point de la trajectoire \(h(t) \).

4.7 Les trajectoires à motricité effective

Considérons un couple initial \((\sigma^0, h^0) \) avec \(\sigma^0 \in \Sigma^N \) associé à \(h^0 = h(\sigma^0) \in \mathbb{H}^3 \). Considérons une trajectoire quelconque \(h(t) \) débutant en \(h^0 \). On appelle trajectoire à motricité effective sa pré-image \(\sigma_e(t) \) dans \(\Sigma^N \) obtenue à partir de \(\sigma^0 \) par l’intégration de la vitesse \(\dot{\sigma}_e \) fournie par la pseudo-inverse de Moore-Penrose :

\[
\dot{\sigma}_e = Y^T h
\]
4.8 Les trajectoires cycliques stables (TCS)

Il est important de savoir si lorsque la trajectoire $h(t)$ décrit un cycle en revenant à son point de départ, il en est de même pour la trajectoire en configuration correspondante $\sigma(t)$, en particulier dans le cas de l’utilisation de la solution de Moore-Penrose générant la trajectoire à motricité effective $\sigma_c(t)$. Cette stabilité est importante, car elle permet le retour à la configuration σ^0 lorsque h revient à h^0.

Nous montrons en annexe 7.1.1 que pour la grappe pyramidale isotrope ($N = 4$) ce n’est pas le cas en général. A une trajectoire $h(t)$ fermée quelconque correspond une trajectoire à motricité effective $\sigma_c(t)$ ouverte. Cette ouverture est généralement faible, mais la répétition du parcours de la trajectoire fermée $h(t)$ peut se traduire par une dérive du point de retour. Toutefois, nos simulations n’ont pas permis de faire la différence entre la dérive résultant de l’intégration des erreurs numériques de celle résultant de la cause théorique (le théorème de Frobenius n’est pas vérifié).

Toutefois, nous montrons également en annexe qu’il n’y a, toujours dans le cas de la grappe pyramidale isotrope 4 trajectoires cycliques stables qui correspondent aux 4 trajectoires cycliques $h(t)$ suivantes :

1. $h_0(t) = h_0(t + T) = 0$ (trajectoire cyclique à moment cinétique nul en permanence),
2. $h_1(t) = h_1(t + T) = \lambda_1(t)z_0$ avec $\lambda_1(t)$ quelconque périodique de période T (trajectoire cyclique selon l’axe z_0),
3. $h_2(t) = h_2(t + T) = \lambda_2(t)u_0$ avec $\lambda_2(t)$ quelconque périodique de période T (trajectoire cyclique selon l’axe u),
4. $h_3(t) = h_3(t + T) = \lambda_3(t)v_0$ avec $\lambda_3(t)$ quelconque périodique de période T (trajectoire cyclique selon l’axe v_0),

où u_0 et v_0 sont les directions définies en 4.3.2.

Les trajectoires en configuration correspondantes sont données dans le tableau suivant :

<table>
<thead>
<tr>
<th>Nom</th>
<th>Equation</th>
<th>α singulier</th>
<th>α pour $h = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMN$_{00}$</td>
<td>(α $-\alpha$ α $-\alpha$)</td>
<td>$\pm \frac{\pi}{6}$ $\pm \frac{\pi}{3}$ $\pm \frac{2\pi}{3}$</td>
<td>$\forall \sigma$</td>
</tr>
<tr>
<td>TCS$_{k0}$</td>
<td>(α α α α)</td>
<td>$\pm \frac{\pi}{2}$ externe</td>
<td>0 et π</td>
</tr>
<tr>
<td>TCS$_{u0}$</td>
<td>(α $-\frac{2\pi}{3}$ α $+ \frac{2\pi}{3}$ $-\alpha$)</td>
<td>$-\frac{\pi}{6}$ et $\frac{2\pi}{3}$ externe</td>
<td>$\frac{\pi}{3}$ et $-\frac{2\pi}{3}$</td>
</tr>
<tr>
<td>TCS$_{v0}$</td>
<td>(α $-\alpha$ $-\alpha$ α $+ \frac{2\pi}{3}$)</td>
<td>$\frac{\pi}{6}$ et $\frac{2\pi}{3}$ externe</td>
<td>$-\frac{\pi}{3}$ et $\frac{2\pi}{3}$</td>
</tr>
</tbody>
</table>

L’orbite centrale TMN$_{00}$ de la TMN $h = 0$ en est une. Les 3 autres constituent un ensemble de 3 trajectoires préférées pour les 3 directions orthonormées u_0, v_0 et k_0. En effet, elles permettent d’atteindre les valeurs maximales du module du moment cinétique sur ces directions, dans les deux sens, sans passer par une singularité (en dehors des points extrêmes).

La TCS$_{k0}$ coupe l’orbite centrale TMN$_{00}$ en $(0, 0, 0, 0)$ et $(\pi, -\pi, \pi, -\pi)$.
La TCS$_{u}$ coupe l’orbite centrale TMN$_{00}$ en $(\frac{\pi}{3}, -\frac{\pi}{3}, \frac{\pi}{3}, -\frac{\pi}{3})$ et $(-\frac{2\pi}{3}, \frac{2\pi}{3}, -\frac{2\pi}{3}, \frac{2\pi}{3})$.

où Y^\dagger est donnée par la relation (4.1).

La trajectoire $\sigma_c(t)$ de Σ^N est appelée trajectoire à motricité effective, car en chacun de ses points sa tangente $\dot{\sigma}_c$ est orthogonale la distribution engendrée par les vecteurs du noyau de Y (elle est orthogonale aux variétés à motricité nulle qui ne produisent aucun moment dynamique).

$\dot{\sigma}_c$ est la vitesse de norme minimale qui produit h. La trajectoire $\sigma_c(t)$ dans Σ^N résultant de l’intégration de $\dot{\sigma}_c$ est la trajectoire la plus courte dans la pré-image \mathcal{M}^N-2 qui relie σ^0 à la VMN associée à $h(t)$ pour t fixé.
4.9 Traversabilité des singularités

Rappelons qu’en une configuration singulière \(\sigma^s \), il existe une direction \(\mathbf{u} \) telle que \(\mathbf{u}^T \mathbf{Y} (\sigma^s) = 0 \), c’est-à-dire telle \(\mathbf{u}^T \frac{d}{d t} \mathbf{h} = 0 \). Il en résulte que la vitesse de variation de \(\mathbf{h} \) est nulle dans la direction de \(\mathbf{u} \). Si on désire justement faire varier \(\mathbf{h} \) dans cette direction, il est important de savoir si ce point de passage à vitesse nulle n’est qu’un point d’arrêt momentané, la variation de \(\mathbf{h} \) (résultant de variations continues de \(\sigma \)) pouvant reprendre ensuite, toujours dans la même direction, ou si c’est un point d’arrêt terminus pour lequel la variation de \(\mathbf{h} \) ne peux reprendre qu’en repartant en arrière. Dans un cas la surface singulière \(\mathcal{H}^s \) passant par \(\sigma^s \) est dite intraversable en \(\sigma^s \) et dans l’autre cas elle est dite traversable.

Nous montrons en annexe 7.2 que cette traversabilité est liée au signe de la signature de la singularité notée \(\pi^q \) et au signe du produit \(\pi^s \) des valeurs propres de la matrice :

\[
\mathbf{J} = \sum_i \frac{1}{q_i} \mathbf{y}_i \mathbf{y}_i^T
\]

avec :

\[
q_i = \mathbf{u}^T \mathbf{x}_i
\]

\(\pi^q \) et \(\pi^s \) s’obtiennent par :

\[
\pi^q = \prod_{i=1}^N (\mathbf{u}^T \mathbf{x}_i)
\]

\[
\pi^s = \sum_{i<j} \frac{1}{q_i q_j} |\mathbf{y}_i \mathbf{y}_j \mathbf{u}|^2 = \sum_{i<j} \frac{1}{q_i q_j} \|\mathbf{y}_i \times \mathbf{y}_j\|^2
\]

La surface singulière est traversable si et seulement si signe \((\pi^q / \pi^s)) < 0 \).

A titre d’exemple dans le cas \(N = 4 \), la table 4.1 précise la traversabilité en fonction de la signature et du signe de \(\pi^s \) :

<table>
<thead>
<tr>
<th>Signature</th>
<th>(\pi^q)</th>
<th>(\pi^s > 0)</th>
<th>(\pi^s < 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4+ et 0−</td>
<td>> 0</td>
<td>impassable</td>
<td>−</td>
</tr>
<tr>
<td>3+ et 1−</td>
<td>< 0</td>
<td>passable</td>
<td>impassable</td>
</tr>
<tr>
<td>2+ et 2−</td>
<td>> 0</td>
<td>impassable</td>
<td>passable</td>
</tr>
<tr>
<td>1+ et 3−</td>
<td>< 0</td>
<td>passable</td>
<td>impassable</td>
</tr>
<tr>
<td>0+ et 4−</td>
<td>> 0</td>
<td>impassable</td>
<td>−</td>
</tr>
</tbody>
</table>

TABLE 4.1 – Traversabilité dans le cas N=4

Exemple 1 : Dans le cas de la grappe pyramidale isotrope, la configuration \(\sigma^s = (\frac{\pi}{6}, -\frac{\pi}{6}, \frac{\pi}{6}, -\frac{\pi}{6}) \) est singulière de signature \((- - + +)\) relativement à la direction \(\mathbf{u}^T = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right) \). On a \(\pi^q > 0 \) (2 signe −, 2 signes +).
En ce point singulier les matrices X et Y s’écritent :

$$
X = \begin{pmatrix}
-1 & -\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 1 & -\frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & 1
\end{pmatrix}
$$

$$
Y = \begin{pmatrix}
-1 & -1 & 1 & 1 \\
-1 & -\frac{1}{2} & \frac{1}{2} & 1 \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 1 \\
\frac{1}{2} & -\frac{1}{2} & 1 & 1
\end{pmatrix}
$$

Les q_i sont donnés par la première ligne de X, d’où :

$$
\pi^s = \frac{3}{2} \begin{vmatrix}
\frac{1}{\sqrt{3}} & -\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{1}{\sqrt{3}} & -\frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{3}}
\end{vmatrix}^2 - \frac{3}{2} \begin{vmatrix}
\frac{1}{\sqrt{3}} & -\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{\sqrt{3}} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{3}}
\end{vmatrix}^2
$$

$$
\pi^s = -6 < 0
$$

π^s est négatif, π^q est positif donc π^{α} est négatif. La singularité est traversable.

En effet, la relation 7.1 (Annexe 7.2) permet de calculer

$$dh = -\frac{1}{2}X d\sigma^2$$

Deux vecteurs orthonormaux du noyau de Y sont $(1, -1, 0, 0)^T$ et $(0, 0, 1, -1)^T$. On peut vérifier que pour la première direction on a (en $d\sigma_i^2$) :

$$dh = -\begin{pmatrix}
-1 \\
\frac{1}{\sqrt{3}} \\
\frac{1}{2}
\end{pmatrix}
\begin{pmatrix}
1 \\
1 \\
0
\end{pmatrix}
= \begin{pmatrix}
\frac{2}{3}\sqrt{3} \\
\frac{2}{3}\sqrt{3} \\
0
\end{pmatrix}$$

qui est dans le sens de u et pour la deuxième, on a :

$$dh = -\begin{pmatrix}
-1 \\
\frac{1}{\sqrt{3}} \\
\frac{1}{2}
\end{pmatrix}
\begin{pmatrix}
0 \\
1 \\
1
\end{pmatrix}
= \begin{pmatrix}
-\frac{2}{3}\sqrt{3} \\
\frac{2}{3}\sqrt{3} \\
0
\end{pmatrix}$$

qui est dans le sens de $-u$. La singularité est bien traversable.

Exemple 2 : Toujours dans le cas de la grappe pyramidale isotrope, la configuration $\sigma^s = (-\frac{2}{3}, 0, \frac{2}{3}, 0)$ est singulière de signature $(++++)$ relativement à la direction $u^T = (1, 0, 0)$. On a $\pi^q < 0$ (1 signe $-$, trois signes $+$).

En ce point singulier les matrices X et Y s’écritent :

$$
X = \begin{pmatrix}
a & -1 & a \\
0 & 0 & 0 \\
-b & 0 & b
\end{pmatrix}
$$

$$
Y = \begin{pmatrix}
0 & 0 & 0 & 0 \\
1 & -a & 1 & a \\
0 & b & 0 & b
\end{pmatrix}
$$

avec $a = \sqrt{1/3}$ et $b = \sqrt{2/3}$.

Les q_i sont donnés par la première ligne de X, d’où :

Réf. DCSD-2009_008-NOT-005-1.0

Page 28/92
4.10 Topologie au voisinage d’un point singulier interne intraversable

La pré-image Σ_{x_0} de la trajectoire $h = \lambda x_0$ se termine en cul-de-sac en ce point. Si on inspecte les orbites de la TMN associée à $h(\sigma^i) = (1.1547, 0, 0)^T$, cette TMN est constituée de trois orbites dont deux sont réduites aux points singuliers $(-90°, 0, 90°, 0)$ et $(-90°, 180°, -90°, 180°)$. Les point les plus proches, du point singulier $\sigma^2 = (-90°, 0, 90°, 0)$ sur la troisième orbite se situent aux deux configurations suivantes : $(-120.3°, -41.8°, 78.7°, 33.3°)$ et $(-94.4°, 38.8°, 131.2°, -22.4°)$. Pour passer à la première la discontinuité sur σ_2 atteint $41.8°$ et pour passer à la seconde la discontinuité sur σ_3 atteint $41.2°$.

Une esquisse de la topologie de la pré-image Σ_{x_0} est représentée sur la figure 4.4.

- A la base, les différentes orbites connexes des TMN $0 (\lambda = 0)$ se séparent pour générer 3 tubes non connexes (sans intersection).
- Pour $\lambda = 0.8453$ le plus grand des trois tubes se scinde en deux. Ainsi, pour des valeurs de λ légèrement supérieures, les TMN associées à $H = \lambda x_0$ sont constituées de 4 orbites.
- Vers $\lambda = 1.14$ les 4 tubes se mélangent à nouveau pour former deux nouveaux petits tubes et un très grand tube.
— Pour $\lambda = 1.1547$ les deux petits tubes se terminent en cul-de-sac en $(-\pi/2,0,\pi/2,0)$ et $(-\pi/2,\pi,\pi/2,\pi)$.
— Le grand tube continue et permet d’atteindre l’extrémité en cul-de-sac sur la singularité externe $(-\pi/2,\pi,\pi,0)$ pour $\lambda = 3.1547$.

Le problème posé par ces points singuliers internes intraversables est qu’ils sont attractifs. Ainsi si à partir de $h = 0$, on désire produire un moment cinétique maximal dans la direction de x_0, par une simple commande en Moore-Penrose de type $\dot{\sigma} = Y^\dagger \dot{h}$, le tiers des points de départ admissibles sur la TMN00 $\sigma = (\alpha, -\alpha, \alpha, -\alpha)^T$ conduisent directement sur la singularité intraversable. Ceci est illustré sur les figures 4.5 et 4.6.

Sur la figure 4.5 on constate que pour $\alpha \in (-30^\circ, +30^\circ)$ et pour $\alpha \in 180^\circ + (-30^\circ, 30^\circ)$, la trajectoire est bloquée à $\lambda = 1.1547$. En dehors de ces deux intervalles la valeur maximale $\lambda = 3.1547$ est atteinte partout, sauf pour les deux points singuliers situés à $\alpha = \pm 90^\circ$.

Sur la figure 4.6 on constate les points partant de l’intervalle $\alpha \in (-30^\circ, +30^\circ)$ aboutissent au point singulier $(-90^\circ,0,90^\circ,0)$, et que ce qui partent de l’intervalle $\alpha \in 180^\circ + (-30^\circ, 30^\circ)$ aboutissent au point singulier $(-90^\circ,180^\circ,-90^\circ,180^\circ)$. Les point partant en dehors de ces deux intervalles aboutissent tous à la configuration externe $(-90^\circ,180^\circ,90^\circ,0^\circ)$, à l’exception des points situés à $\alpha = \pm 90^\circ$ qui restent bloqués au point de départ.
H selon Ox en Moore–Penrose

\[\alpha \text{ de départ (degrés) pour } \sigma = (\alpha, -\alpha, \alpha, -\alpha)^T \]

Figure 4.5 – Moment cinétique maximal atteint selon \(x_0 \) en fonction de \(\sigma_1 \) sur la TMN_{00}.

Réf. DCSD-2009_008-NOT-005-1.0
FIGURE 4.6 – Trajectoires en configuration productrices d’un moment selon x_0

Réf. DCSD-2009_008-NOT-005-1.0
Chapitre 5

Les stratégies locales d’évitement des singularités

On qualifie de locales, les stratégies d’évitement des singularités qui n’utilisent que des informations locales à la configuration instantanée σ et à la demande instantanée de moment m à produire, sans faire appel aux connaissances sur la topologie des configurations singulières. Ces stratégies sont basées sur l’utilisation du noyau n de la matrice Y pour ajouter à $\dot{\sigma}_e = Y^+ m$ (vitesse à motricité effective) une vitesse à motricité nulle $\dot{\sigma}_n = kn$ où k est un scalaire calculé analytiquement à partir de σ et m.

$$\dot{\sigma} = \dot{\sigma}_e + kn$$ \hspace{1cm} (5.1)

5.1 Utilisation du gradient du déterminant de YY^T

En 1987, N.S. Bedrossian, dans sa thèse effectuée au MIT [6], essaie les lois d’évitement suivantes (transformées avec nos notations) :

— 1ère méthode du gradient :

$$\dot{\sigma} = \dot{\sigma}_e + |\sigma_e^T \text{grad}_\sigma d| \ n n^T \text{grad}_\sigma \Delta$$

— 2ème méthode du gradient :

$$\dot{\sigma} = \dot{\sigma}_e + \frac{1}{c} \text{sign} (n^T \text{grad}_\sigma d) |\sigma_e^T \text{grad}_\sigma d| \ n$$

Nous avons testé ces lois pour produire la trajectoire $h = \lambda x_0$ à partir de toutes les configurations initiales de la TMN$_{00}$. Le résultat est strictement identique à celui qui est obtenu en pseudo-inverse pure ($\ddot{\sigma} = \ddot{\sigma}_e$). On obtient exactement les mêmes valeurs maximales de λ pour les mêmes configurations de départ, et les trajectoires conduisent aux mêmes singularités internes ou externes pour les mêmes configurations de départ. On obtient exactement les mêmes figures que celles obtenues (4.5 et 4.6) avec la pseudo-inverse de Moore-Penrose seule.

Les stratégies qui utilisent le gradient du déterminant pour éviter les singularités internes échouent.

Analyse de la non-efficacité du gradient du déterminant

Pour comprendre cette inefficacité, nous avons analysé ces trajectoires.

Tout d’abord, examinons la valeur de $\Delta = \det (YY^T)$ sur la TMN$_{00}$ définie par $\sigma = (\alpha, -\alpha, \alpha, -\alpha)^T$.

On trouve tous calculs faits :

$$\Delta = 16b^2 \cos^2 \alpha \left[(a^2 + 1) \cos^2 \alpha - 1 \right]^2$$
5. Les stratégies locales d’évitement des singularités

Ce déterminant s’annule pour :

\[\alpha = \pm \frac{\pi}{2} \quad ; \quad \alpha = \pm \arccos \sqrt{\frac{1}{\alpha^2 + 1}} \quad ; \quad \alpha = \pi \pm \arccos \sqrt{\frac{1}{\alpha^2 + 1}} \]

Dans le cas de la pyramide isotope, les 4 dernières valeurs sont \(\pm \frac{\pi}{6} \) et \(\pm \frac{5\pi}{6} \).

La dérivée de ce déterminant vaut :

\[
\frac{d\Delta}{d\alpha} = -32b^2 \cos \alpha \sin \alpha \left[(a^2 + 1) \cos^2 \alpha - 1 \right] \left[3(a^2 + 1) \cos^2 \alpha - 1 \right]
\]

Les extréums de \(\Delta \) correspondent aux valeurs qui l’annulent (les minimums) et aux maximums qui sont situés en :

\[\alpha = 0 \text{ ou } \pi \quad ; \quad \alpha = \pm \arccos \sqrt{\frac{1}{3(a^2 + 1)}} \quad ; \quad \alpha = \pi \pm \arccos \sqrt{\frac{1}{3(a^2 + 1)}} \]

Dans le cas de la pyramide isotope, les 4 dernières valeurs sont \(\pm \frac{\pi}{3} \) et \(\pm \frac{2\pi}{3} \).

Pour \(\alpha = 0 \text{ ou } \pi \) le maximum vaut \(\Delta_{\text{max}} = 16b^2a^4 \) (=1.1852 en isotope). Pour les 4 autres valeurs, il vaut \(\Delta_{\text{max}} = \frac{64}{27} \frac{b^2}{a^2 + 1} \) (=1.1852 en isotope).

Le point de départ \((0,0,0,0)\) correspond donc à un maximum local du déterminant sur la TMN\(_0\).

A partir de ce point, en appliquant une commande du type \(\dot{\sigma} = \dot{\sigma}_e + |\dot{\sigma}_e| \nabla \sigma \nabla \Delta \) avec \(Y^\dagger h_{x_0} \), on obtient :

\[
\dot{\sigma} = Y^\dagger \begin{pmatrix} \dot{h} \\ 0 \\ 0 \end{pmatrix} = \frac{\dot{h}}{2a} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}
\]

car en ce point \(\nabla \sigma \nabla \Delta = 0 \). On a donc en intégrant une configuration de la forme \(\sigma = (-\alpha, 0, \alpha, 0)^T \) singularité interne intraversible.

Au point atteint, on a :

\[
X = \begin{pmatrix} a \sin \alpha & -1 & a \sin \alpha & 1 \\ \cos \alpha & 0 & -\cos \alpha & 0 \\ -b \sin \alpha & 0 & b \sin \alpha & 0 \\ -a \cos \alpha & 0 & a \cos \alpha & 0 \end{pmatrix}
\]

\[
Y = \begin{pmatrix} a \cos \alpha & 0 & a \cos \alpha & 0 \\ \sin \alpha & -a & \sin \alpha & a \\ b \cos \alpha & b & b \cos \alpha & b \end{pmatrix}
\]

\[
\Delta = 8a^2b^2 \cos^2 \alpha \left((\sin^2 \alpha) + a^2 \cos^2 \alpha + a^2 \right)
\]

D’où :

\[
\dot{\sigma}_e = Y^\dagger \begin{pmatrix} \dot{h} \\ 0 \\ 0 \end{pmatrix} = \frac{\dot{h}}{2a \cos \alpha} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}
\]

Par ailleurs :

\[
\nabla \sigma \nabla \Delta = 8a^2b^2 \cos \alpha \sin \alpha \left(1 - 2 \cos^2 \alpha + 2a^2 \cos^2 \alpha + a^2 \right) \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}
\]
est orthogonal au noyau :
\[
N = 2ab\cos\alpha \begin{pmatrix}
 a & -a\cos\alpha + \sin\alpha \\
 -a\cos\alpha - \sin\alpha & a
\end{pmatrix}
\]

Il en résulte que la méthode du gradient appliquée au départ de \((0,0,0,0)\) fournit exactement la trajectoire à motricité effective qui conduit à la singularité interne \((-\frac{\pi}{2}, 0, \frac{\pi}{2}, 0)\).

De plus, les méthodes basées sur le gradient du déterminant conduisent, pour les points de départ situés sur l’intervalle \(\sigma_1 = (-\frac{\pi}{6}, \frac{\pi}{6})\) de la TMN\(_{00}\), à la singularité interne \((-\frac{\pi}{2}, 0, \frac{\pi}{2}, 0)\). On trouvera en annexe 7.3 les figures qui illustrent cette incapacité des méthodes basées sur le gradient du déterminant à éviter cette singularité.

5.2 Heuristiques à base de déterminant inverse

Toujours dans sa thèse, N.S. Bedrossian essaie les lois d’évitement suivantes (transformées avec nos notations) :

— 1ère forme gain-inverse :
\[
\dot{\sigma} = \dot{\sigma}_e + k\mathbf{n} \quad \text{avec} \quad k = \min\left(\frac{1}{d^5}, 15d\right)
\]

— 2ème forme gain-inverse :
\[
\dot{\sigma} = \dot{\sigma}_e + k\mathbf{n} \quad \text{avec} \quad k = \min\left\{\begin{array}{ll}
d^7 & \text{si} \quad d > 1 \\
d^{-5} & \text{si} \quad d < 1
\end{array}\right., 3d
\]

Nous avons testé ces lois pour produire la trajectoire \(\mathbf{h} = \lambda\mathbf{x}_0\) à partir de toutes les configurations initiales de la TMN\(_{00}\).

La première forme est extrêmement efficace, puisqu’en dehors configurations de départ singulières, en lesquelles elles sont inapplicables, elle conduit systématiquement à l’enveloppe externe. La figure 7.6 située en annexe 7.4 montre ce résultat et la figure 7.7 montre les trajectoires en configuration résultantes. On constatera sur cette figure, que les trajectoires convergent très rapidement (avant que le moment cinétique réduit ne vaille 1) vers 7 chemins préférés qui conduisent aux singularités externes.

La deuxième forme est légèrement moins efficace, puisque pour les régions \(\sigma_1 \in (-150^\circ, -30^\circ)\) et \(\sigma_1 \in (-150^\circ, -170^\circ)\) les trajectoires sont bloquées par la singularité interne. La figure 7.9 située en annexe 7.4 montre ce résultat et la figure 7.10 montre les trajectoires en configuration résultantes.

Ces méthodes présentent un certain arbitraire. En effet, la quantité \(k\mathbf{n}\) (avec \(k\) systématiquement positif) ajoutée à \(\dot{\sigma}_e\) dépend du choix du sens attribué au vecteur noyau \(\mathbf{n}\). Si, par exemple dans le cas de la première forme, on change le signe de \(k\) (ou de \(\mathbf{n}\)), la méthode conserve toute son efficacité (enveloppe externe systématiquement atteinte sauf au départ des configurations singulières), mais en suivant des trajectoires en configuration différentes représentées sur la figure 7.8.

Enfin, il est des cas où ces 2 méthodes donnent de moins bons résultats que leur non utilisation. Ainsi, considérons une production de moment selon la trajectoire \(\mathbf{h} = \lambda\mathbf{z}_0\). La figure 7.11 située en annexe 7.4 montre que l’enveloppe externe n’est atteinte que pour les configuration de départs suivantes : \(\sigma_1 \in (-210^\circ, -150^\circ)\) et \(\sigma_1 \in (-30^\circ, -30^\circ)\), ainsi que pour quelques valeurs ponctuelles des intervalles \((-150^\circ, -30^\circ)\) et \((30^\circ, 150^\circ)\), c’est-à-dire à peine plus du tiers du domaine de départ. A titre
de comparaison, en l’absence de méthode de contournement, c’est-à-dire en pseudo-inverse de Moore-Penrose pure, la figure 7.12 montre que l’enveloppe externe est pareillement atteinte sur les intervalles \(\sigma_1 \in (-210°, -150°) \) et \(\sigma_1 \in (-30°, -30°) \) et plus souvent atteinte sur les deux autres intervalles.

5.3 Pseudo-inverse décalée

Etant données deux matrices \(A \) et \(B \) quelconques de mêmes dimensions et de rang plein telles que \((AB^T)^{-1}\) existe, on vérifie immédiatement que la matrice \(B^T (AB^T)^{-1} \) est une inverse à droite de la matrice \(A \). A partir de cette propriété, S. Asghar [20] propose une stratégie d’évitement qui pour (pseudo-)inverser \(A = Y \), utilise la matrice \(B = X + Y \), d’où :

\[
\dot{\sigma} = (X + Y)^T \left(Y (X + Y)^T \right)^{-1} m
\] \hfill (5.2)

C’est une variété de stratégie locale qui ne fait appel à aucune connaissances sur la topologie des singularités.

Disons tout de suite que cette stratégie ne marche pas. A titre d’exemple, pour la production d’un moment cinétique de type \(h = \lambda x_0 \), cette stratégie se bloque sur des singularités diverses pour des productions en moment cinétique inférieures ou égales à \(\lambda = 1.1547 \) pour plus de la moitié des points de départ de la TMN\(_{00}\).

La figure 5.1 montre le moment cinétique maximal atteint en fonction de la valeur de l’angle \(\sigma_1 \) au départ :

- \(\alpha \in (-180°, -174°) \) : \(\lambda > 3 \) atteint,
- \(\alpha \in (-173°, -135°) \) : \(\lambda < 1.15 \), sauf ponctuellement pour \(\alpha = -154° \),
- \(\alpha \in (-134°, -91°) \) : \(\lambda > 3 \) atteint,
- \(\alpha \in (-90°, -30°) \) : \(\lambda < 1.15 \),
- \(\alpha \in (-29°, 6°) \) : \(\lambda > 3 \) atteint,
- \(\alpha \in (7°, 44°) \) : \(\lambda < 1.15 \), sauf ponctuellement pour \(\alpha = 26° \),
- \(\alpha \in (45°, 89°) \) : \(\lambda > 3 \) atteint,
- \(\alpha \in (90°, 150°) \) : \(\lambda < 1.15 \),
- \(\alpha \in (151°, 180°) \) : \(\lambda > 3 \) atteint.

La figure 5.2 montre les configurations singulières atteintes à l’issue de ces trajectoires. Pour les intervalles \((-173°, -135°) \), \((-90°, -30°) \), \((30°, 44°) \) et \((90°, 150°) \) ce ne sont pas les singularités habituelles rencontrées en Moore–Penrose. Ce sont des singularités diverses, plus proches de l’origine, sur lesquelles se bloque cette méthode.

La relation 5.2 montre que \(\dot{\sigma} \) appartient à \(\text{Im} \left(X^T + Y^T \right) \). Si on écrit que ce contournement est équivalent à un contournement de la forme 5.1, ou \(\dot{\sigma}_e \) appartient à \(\text{Im} \left(Y^T \right) \), on constate que la méthode d’Asghar consiste à ajouter à la motricité effective \(\dot{\sigma}_e \) une vitesse à motricité nulle qui conduit \(\dot{\sigma} \) jusqu’au sous-espace \(\text{Im} \left(X^T + Y^T \right) \). Autrement dit, la quantité \(\mathbf{m} \) utilisée est un relevé orthogonal du sous-espace \(\text{Im} \left(Y^T \right) \) dans le sous-espace \(\text{Im} \left(X^T + Y^T \right) \). Jusqu’à preuve du contraire, c’est totalement arbitraire. Le hasard fait que partant de la configuration \((0, 0, 0, 0)\) cette méthode permet de contourner la singularité habituellement rencontrée, mais en général, elle apporte nettement plus d’inconvénients que de bénéfices.
5.3 PSEUDO-INVERSE DÉCALÉE

\[H \text{ selon } Ox \text{ en Asghar} \]

\[\alpha \text{ de départ (degrés) pour } \sigma = (\alpha, -\alpha, \alpha, -\alpha)^T \]

\[H \text{ max} \]

Figure 5.1 – Moment cinétique maximal atteint selon \(\alpha_0 \) en fonction de \(\sigma_1 \) sur la TMN_{00}

Réf. DCSD-2009_008-NOT-005-1.0
Figure 5.2 – Trajectoires en configuration productrices d’un moment selon x_0
Chapitre 6

La stratégie d’évitement de Kurokawa

Ce chapitre présente une analyse de la méthode de guidage présentée par Haruhisa Kurokawa [14] et les considérations pratiques de mise en œuvre que nous avons développées.

6.1 Notations

Rappelons quelques notations :
— \vec{z}_0 est le vecteur de base selon la verticale de la pyramide,
— (\vec{x}_0, \vec{z}_0) est le plan contenant l’actionneur gyroscopique numéro 1,
— \vec{u}_0 est le vecteur unitaire de la direction de la première bissectrice du plan $(\vec{x}_0, \vec{y}_0) : \vec{u}_0 = \frac{1}{\sqrt{2}}(\vec{x}_0 + \vec{y}_0)$
— \vec{v}_0 est le vecteur unitaire de la direction de la deuxième bissectrice : $\vec{v}_0 = \frac{1}{\sqrt{2}}(-\vec{x}_0 + \vec{y}_0)$.
— β est l’angle à la base de la pyramide. On pose :

$$\cos \beta = a \quad ; \quad \sin \beta = b$$

(avec $a = 1/\sqrt{3}$ et $b = \sqrt{2/3}$ dans le cas de la pyramide isotropique).

6.2 Les trois politiques de Kurokawa

La méthode de Kurokawa est basée sur trois politiques distinctes qui sont choisies en fonction de la direction principale du moment cinétique maximal qui doit être créé. Nous les nommerons politique Z, politique U et politique V :
— politique Z de direction privilégiée selon \vec{z}_0,
— politique U de direction privilégiée selon \vec{u}_0,
— politique V de direction privilégiée selon \vec{v}_0.

Il y a deux configurations de base pour un moment cinétique total nul $\vec{H} = \vec{0}$ pour chacune de ces trois politiques. Ce sont les configurations suivantes :
— Politique Z : $(0, 0, 0, 0)$ et (π, π, π, π)
— Politique U : $(-\frac{2\pi}{3}, \frac{2\pi}{3}, -\frac{2\pi}{3}, \frac{2\pi}{3})$ et $(\frac{\pi}{3}, -\frac{\pi}{3}, \frac{\pi}{3}, -\frac{\pi}{3})$
— Politique V : $(\frac{2\pi}{3}, -\frac{2\pi}{3}, \frac{2\pi}{3}, -\frac{2\pi}{3})$ et $(-\frac{\pi}{3}, \frac{\pi}{3}, -\frac{\pi}{3}, \frac{\pi}{3})$

ce que l’on peut résumer par :

$$(\sigma_{10}, \sigma_{20}, \sigma_{30}, \sigma_{40}) = (\gamma, -\gamma, \gamma, -\gamma)$$

avec :
— Politique Z: $\gamma = 0$ ou π
— Politique U: $\gamma = \frac{\pi}{3}$ ou $-\frac{2\pi}{3}$
— Politique V: $\gamma = \frac{2\pi}{3}$ ou $-\frac{\pi}{3}$

De plus pour les trois politiques, Kurokawa impose la contrainte suivante :

$$\sigma_1 - \sigma_2 + \sigma_3 - \sigma_4 = 0$$

En l’intégrant et compte tenu des conditions initiales en $\mathbf{H} = \mathbf{0}$, on obtient :

$$\sigma_1 - \sigma_2 + \sigma_3 - \sigma_4 = 4\gamma$$ \hfill (6.1)

avec $4\gamma = 0$ en politique Z, $4\gamma = -\frac{2\pi}{3}$ en politique U et $4\gamma = \frac{2\pi}{3}$ en politique V.

Considérons trois variables auxiliaires supplémentaires (en plus de γ) X, Y et Z quelconques. La contrainte de Kurokawa est automatiquement maintenue en choisissant une configuration $(\sigma_1, \sigma_2, \sigma_3, \sigma_4)$ donnée par :

$$\begin{cases}
\sigma_1 = Z + X + \gamma \\
\sigma_2 = Z + Y - \gamma \\
\sigma_3 = Z - X + \gamma \\
\sigma_4 = Z - Y - \gamma
\end{cases} \hfill (6.2)$$

On en déduit que :

$$\begin{cases}
X = \frac{\sigma_1 - \sigma_3}{2} \\
Y = \frac{\sigma_2 - \sigma_4}{2} \\
Z = \frac{\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4}{4} \\
\gamma = \frac{\sigma_1 - \sigma_2 + \sigma_3 - \sigma_4}{4}
\end{cases} \hfill (6.3)$$

Si la valeur trouvée pour 4γ n’est pas égale à 0 ou à $\pm \frac{2\pi}{3}$, la configuration σ n’est pas une configuration de Kurokawa.

Dans son article Kurokawa ne traite que de la politique Z. En conséquence la constante γ n’apparaît pas dans ses formules. Par ailleurs, ses θ_i correspondent à nos σ_i et on a la correspondance suivante :

$$\chi = X \, , \, \psi = Y \, , \, \phi = Z$$

Nous préférons les notations X, Y et Z qui ont l’avantage d’être plus simple à lire et prononcer et qui de plus rappellent l’axe autour duquel se produit le moment dynamique quand seule la variable considérée varie. En effet, nous verrons plus loin que pour la politique Z, en configuration origine, \dot{X} produit un moment dynamique selon \bar{x}_0, \dot{Y} produit un moment dynamique selon \bar{y}_0 (aux signes près), et \dot{Z} produit un moment dynamique selon \bar{z}_0.

6.3 Domaine atteignable en moment cinétique

La contrainte (6.1) imposée par Kurokawa réduit les moments cinétiques réalisables :

$$\mathbf{H} = \begin{pmatrix}
-a \sin \sigma_1 - \cos \sigma_2 + a \sin \sigma_3 + \cos \sigma_4 \\
\cos \sigma_1 - a \sin \sigma_2 - \cos \sigma_3 + a \sin \sigma_4 \\
-b \sin \sigma_1 + b \sin \sigma_2 + b \sin \sigma_3 + b \sin \sigma_4
\end{pmatrix}$$
6.4 Restriction de la jacobienne

De même le moment dynamique devient :

\[\dot{\mathbf{H}} = \mathbf{J} \begin{pmatrix} \dot{X} \\ \dot{Y} \\ \dot{Z} \end{pmatrix} \]

avec :

\[
\mathbf{J} = 2 \begin{pmatrix}
-a \cos(Z + \gamma) \cos X & \sin(Z - \gamma) \cos X & a \sin(Z + \gamma) \sin X + \cos(Z - \gamma) \sin Y \\
-\sin(Z + \gamma) \cos X & -a \cos(Z - \gamma) \cos Y & -\cos(Z + \gamma) \sin X + a \sin(Z - \gamma) \sin Y \\
-b \sin(Z + \gamma) \sin X & -b \sin(Z - \gamma) \sin Y & b \cos(Z + \gamma) \cos X + b \cos(Z - \gamma) \cos Y
\end{pmatrix}
\]

Pour \(\gamma = 0 \), et pour \(X = Y = Z = 0 \), ces relations se simplifient en \(\dot{\mathbf{H}}^T = 2 \begin{pmatrix} -a \dot{X} \\ -a \dot{Y} \\ 2b \dot{Z} \end{pmatrix} \), ce qui explique le choix du nom des variables \(X, Y \) et \(Z \).
Remarque : dans l’article du Kurokawa, il manque un facteur 2 devant la matrice de la formule numéro 5. Par ailleurs, il y a incohérence entre l’ordre des colonnes de sa matrice et l’ordre des composantes du vecteur $\Omega = (\frac{d\phi}{dt}, \frac{d\psi}{dt}, \frac{d\chi}{dt})$ au niveau des 2 dernières composantes. Notre ordre est donc sans corrélation avec le sien.

Pour obtenir une expression analytique des surfaces singulières il faudrait factoriser le déterminant de la matrice jacobienne \mathbf{J}. Pour $\gamma = 0$ (politique Z) nous arrivons après simplifications à l’expression suivante :

$$|\mathbf{J}| = 8b \left[\cos(Z)(\cos(X) + \cos(Y)) \left(a^2 \cos(X) \cos(Y) + b^2 \sin^2(Z) \right) + a \sin(X) \sin(Y) \sin(Z)(\cos(X) - \cos(Y)) \right] \quad (6.6)$$

qu’il faudrait encore factoriser pour faire apparaître les singularités.

Le système 6.4 étant non linéaire, sa résolution analytique est assez complexe et passe par le calcul des racines multiples d’un polynôme de degré 8. Ce type de calcul étant très peu précis, il doit être raffiné par une résolution de type itératif.

6.5 Obtention d’un moment cinétique quelconque donné

Etant donné un moment cinétique H à réaliser selon une politique définie par la valeur de γ comment obtient-on la configuration X, Y et Z qui fournit H ? Le problème consiste à résoudre, en X, Y et Z le système 6.4. Posons pour simplifier :

$$\begin{pmatrix} P \\ Q \\ R \end{pmatrix} = \begin{pmatrix} H_x/2 \\ H_y/2 \\ H_z/2 \end{pmatrix}$$

Le système à résoudre en X, Y et Z s’écrit :

$$-a \cos(Z + \gamma) \sin(X) + \sin(Z - \gamma) \sin(Y) = P \quad (6.7)$$

$$-\sin(Z + \gamma) \sin(X) - a \cos(Z - \gamma) \sin(Y) = Q \quad (6.8)$$

$$b \sin(Z + \gamma) \cos(X) + b \sin(Z - \gamma) \cos(Y) = R \quad (6.9)$$

6.5.1 Approche analytique en politique Z

En résolvant les équations 6.7 et 6.8 en sinX et sinY on obtient :

$$\begin{pmatrix} \sin(X) \\ \sin(Y) \end{pmatrix} = \frac{1}{a^2 \cos(Z + \gamma) \cos(Z - \gamma) + \sin(Z + \gamma) \sin(Z - \gamma)} \begin{pmatrix} -aP \cos(Z - \gamma) - Q \sin(Z - \gamma) \\ P \sin(Z + \gamma) - aQ \cos(Z + \gamma) \end{pmatrix}$$

Cette résolution est inextricable dans ce cas général. Nous la poursuivons dans le cas particulier $\gamma = 0$ en politique Z.

Résolution du système

Pour $\gamma = 0$, les relations précédentes se simplifient en :

$$-a \cos Z \sin X + \sin Z \sin Y = P \quad (6.10)$$

$$-\sin Z \sin X - a \cos Z \sin Y = Q \quad (6.11)$$

$$b \sin Z (\cos X + \cos Y) = R \quad (6.12)$$
La résolution de 6.10 et 6.11 donne :
\[
\begin{pmatrix}
\sin X \\
\sin Y
\end{pmatrix} = \frac{1}{a^2 \cos^2 Z + \sin^2 Z} \begin{pmatrix}
-aP \cos Z - Q \sin Z \\
P \sin Z - aQ \cos Z
\end{pmatrix}
\] (6.13)

avec les possibilités suivantes :
\[
a^2 \cos^2 Z + \sin^2 Z = 1 - b^2 \cos^2 Z = a^2 + b^2 \sin^2 Z
\]

Nous cherchons à produire une équation n’ayant que \(Z\) comme inconnue. Il faut donc éliminer \(X\) et \(Y\) de l’équation 6.12. En l’élevant au carré \(^1\) (pour faire apparaître des \(\cos^2 X\) et \(\cos^2 Y\)) elle devient :
\[
2b^2 \sin^2 Z \cos X \cos Y = R^2 - b^2 (\sin^2 Z) (\cos^2 X + \cos^2 Y)
\] (6.14)

En élevant encore au carré \(^2\) on obtient :
\[
R^4 - 2b^2 R^2 \sin^2 Z [2 - (\sin^2 X + \sin^2 Y)] + b^4 \sin^4 Z (\sin^2 X - \sin^2 Y)^2 = 0
\]

En utilisant les valeurs de \(\sin X\) et \(\sin Y\) tirées de 6.13, on obtient :
\[
A_8 \sin^8 Z + A_6 \sin^6 Z + A_4 \sin^4 Z + A_2 \sin^2 Z + A_0 = (B_7 \sin^7 Z + B_5 \sin^5 Z) \cos Z
\] (6.15)

avec :
- \(F = (P^2 - Q^2) (1 + a^2)\)
- \(A_8 = b^4 \left[F^2 - (4PQa)^2 \right]\)
- \(A_6 = -b^4 \left[2a^2 F (P^2 - Q^2) - (4PQa)^2 \right] + 4b^2 R^2 \]
- \(A_4 = b^4 \left[a^4 (P^2 - Q^2)^2 + R^2 [R^2 + 2 (P^2 + Q^2) - 8a^2] \right]\)
- \(A_2 = 2a^2 b^2 R^2 \left[P^2 + Q^2 + R^2 - 2a^2 \right]\)
- \(A_0 = R^4 a^4\)
- \(G = 8ab^4 PQ (P^2 - Q^2)\)
- \(B_5 = -Ga^2\)
- \(B_7 = G (1 + a^2)\)

On élève au carré \(^3\), une dernière fois pour éliminer \(\cos Z\) en fonction de \(\sin^2 Z\). On obtient finalement le polynôme :
\[
\sum_{n=0}^{8} C_n \sin^{2n} Z = 0
\] (6.16)

avec :
- \(C_8 = A_8^2 + B_7^2\)
- \(C_7 = 2A_6 A_8 + 2B_3 B_7 - B_7^2\)
- \(C_6 = 2A_4 A_8 + A_8^2 + B_5^2 - 2B_3 B_7\)
- \(C_5 = 2A_2 A_8 + 2A_4 A_6 - B_5^2\)
- \(C_4 = 2A_0 A_8 + 2A_2 A_6 + A_4^2\)
- \(C_3 = 2 (A_0 A_6 + A_2 A_4)\)
- \(C_2 = 2A_0 A_4 + A_2^2\)
- \(C_1 = 2A_0 A_2\)
- \(C_0 = A_0^2\)

\(^1\) On fait apparaître une solution indésirable qui correspond à \(-R\)
\(^2\) C’est encore une solution indésirable relative à \(-R\) qui est ajoutée.
\(^3\) Le signe de \(\cos Z\) est indifférent, puisque si \(Z\) est solution, \(\pi - Z\) l’est aussi.
Nombre de solutions

Nous obtenons éventuellement 8 solutions en \(\sin^2 Z \). On ne retiendra que celles qui sont comprises entre 0 et 1. On a le choix entre \(\sin Z \) positif ou négatif. Nous prendrons systématiquement \(\sin Z \) positif, car on sait que si \((X, Y, Z, \gamma) \) est solution, \((X + \pi, Y + \pi, Z + \pi, \gamma) \) l’est aussi (avec le signe opposé pour \(\sin Z \)) et conduit à la même configuration en précession. On a ensuite le choix entre \(\cos Z \) positif ou négatif (les 2 cas sont possibles). On déduit \(\sin X \) et \(\sin Y \) par 6.13. Les signes de \(\cos X \) et \(\cos Y \) sont choisis de telle manière que la relation 6.12 soit vérifiée.

Après programmation de ces algorithmes, nous avons constaté qu’en dehors de solutions multiples, le polynôme ne fournit qu’une solution valide en \(\sin^2 Z \). Nous venons de voir qu’on peut se limiter à \(\sin Z > 0 \) et prendre \(Z \) dans l’intervalle \((0, \pi)\). Cette méthode conduit donc au plus à 2 configurations distinctes qui correspondent à \(Z_1 = \arcsin \sqrt{\sin^2 Z} \) et \(Z_2 = \pi - Z_1 \).

Précision de la résolution

Si l’inversion analytique présente l’avantage de fournir directement des solutions à la relation \(\mathcal{H} = \mathcal{M} (X, Y, Z) \), elle présente l’inconvénient d’être très peu précise. En effet la solution trouvée en \(\sin^2 Z \) vérifie la relation 6.16 avec la précision de calcul des racines d’un polynôme, disons de l’ordre de \(10^{-14} \) double précision. Cette relation est le carré de la relation 6.15 que \(\sin^2 Z \) ne vérifie plus qu’avec une précision de l’ordre de \(10^{-7} \). Cette relation est obtenue en élevant au carré de la relation 6.14 qui n’est plus vérifiée par \(\sin^2 Z \) qu’avec une précision de l’ordre de \(3.10^{-4} \), qui est elle même obtenue en élevant au carré l’équation originale 6.12 qui n’est plus vérifié par \(\sin Z \) qu’avec une précision de l’ordre de \(2.10^{-2} \). Il faut donc procéder à un raffinage de cette solution par une procédure itérative.

6.5.2 Inversion itérative en politique Z

Notons \(X \) le vecteur \(\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \).

Etant donné un epsilon de précision désirée \(\epsilon_{des} \), le système \(H_{des} = H(X) \) se résout, à partir d’une configuration de départ \(X = X_0 \) par la méthode de Newton-Raphson, de la manière suivante :

1. Calculer \(H = H(X) \), \(\Delta H = H_{des} - H \) et \(\epsilon_1 = \max_{i=1,3} |\Delta H_i| \).
2. Si \(\epsilon_1 < \epsilon_{des} \) alors \(X \) est solution. Fin de l’algorithme.
3. Calculer \(J(X) \) et résoudre le système linéaire \(\Delta H = J \Delta X \).
4. Si \(X + \Delta X \equiv X \), Abandon de l’algorithme. Pas de solution.
5. Calculer \(H = H(X + \Delta X) \), \(\Delta H = H_{des} - H \) et \(\epsilon_2 = \max_{i=1,3} |\Delta H_i| \).
6. Si \(\epsilon_2 \geq \epsilon_1 \) faire \(\Delta X = \frac{1}{2} \Delta X \) et aller à l’étape 4.
7. Faire \(X = X + \Delta X \), \(\epsilon_1 = \epsilon_2 \) et aller à l’étape 2.

On peut constater que l’algorithme présente deux boucles imbriquées. La boucle interne n’est nécessaire que si \(X \) est éloigné de la solution recherchée. Dans ce cas, le premier \(\Delta X \) calculé est dans la direction susceptible de produire une décroissance de \(\epsilon_1 \), mais sa taille peut être telle qu’au niveau du \(X + \Delta X \) atteint, on soit plus loin de \(H_{des} \) que \(H(X) \). On diminue donc la taille de \(\Delta X \), tout en conservant sa direction, en la divisant par 2 jusqu’à ce que le point atteint soit effectivement plus proche de \(H_{des} \). Cette dichotomie peut échouer et mener à un \(\Delta X \) si petit que \(X + \Delta X \) soit numériquement égal à \(X \), avec...
6.5 Obtention d’un moment cinétique quelconque donné

toujours $\epsilon_2 \geq \epsilon_1$. L’algorithme est alors en échec et ne peut plus rapprocher H de H_{des}, ce qui se produit lorsque H_{des} est inatteignable.

Remarque : Lorsque $|J| = 0$, le plus simple est que la méthode de résolution de $\Delta H = J \Delta X$ utilisée à l’étape 3 fournisse $\Delta X = 0$.

Nous noterons :

$$X = \mathcal{H}_{iterZ}^{-1}(H, X_0)$$

le résultat produit par cet algorithme.

6.5.3 Extension au cas des politique U et V

Dans le cas de la pyramide isotrope ($a = \cos \beta = \sqrt{1/3}$ et $b = \sin \beta = \sqrt{2/3}$) les algorithmes développées pour la politique Z peuvent être utilisés pour les politiques U et V, moyennant quelques transformations.

Politique U

Considérons un moment cinétique désiré H_{des} dans le cas de la politique U. La rotation $R_{\frac{2\pi}{3} z_1}$ de 120° autour de l’axe de précession z_1 de la première toupie transforme ce moment en un moment H'_{des} :

$$H'_{des} = R_{\frac{2\pi}{3} z_1}(H_{des})$$

avec :

$$\begin{bmatrix} R_{\frac{2\pi}{3} z_1} \end{bmatrix}_0 = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

Or $R_{\frac{2\pi}{3} z_1}(u_0) = z_0$. Dans cette transformation, les vecteurs plutôt alignés selon \tilde{u}_0 deviennent plutôt alignés avec \tilde{z}_0. On peut donc rechercher, par les algorithmes élaborés pour la politique Z, les configurations $(\sigma'_1, \sigma'_2, \sigma'_3, \sigma'_4)$ qui réalisent H'_{des}. Ensuite la substitution inverse S^{-1}_3 définie par :

$$S^{-1}_3 : \begin{cases}
\sigma_1 = \sigma'_1 - \frac{2\pi}{3} \\
\sigma_2 = \sigma'_4 + \frac{2\pi}{3} \\
\sigma_3 = -\sigma'_3 - \frac{2\pi}{3} \\
\sigma_4 = -\sigma'_2 + \frac{2\pi}{3}
\end{cases}$$

permet de trouver les configurations qui réalisent H_{des}.

Politique V

Considérons un moment cinétique désiré H_{des} dans le cas de la politique V. La rotation $R_{-\frac{2\pi}{3} z_1}$ de -120° autour de l’axe de précession z_1 de la première toupie transforme ce moment en un moment H'_{des} :

$$H'_{des} = R_{-\frac{2\pi}{3} z_1}(H_{des})$$

avec :

$$\begin{bmatrix} R_{-\frac{2\pi}{3} z_1} \end{bmatrix}_0 = \begin{bmatrix} R_{\frac{2\pi}{3} z_1} \end{bmatrix}_0^T$$
Or $\mathbf{R}_{\frac{2\pi}{3}} x_1 (v_0) = -z_0$. Dans cette transformation, les vecteurs plutôt alignés selon v_0 deviennent plutôt alignés avec z_0. On peut donc rechercher, par les algorithmes élaborés pour la politique Z, les configurations $(\sigma_1', \sigma_2', \sigma_3', \sigma_4')$ qui réalisent \mathbf{H}_{des}. Ensuite la substitution inverse \mathbf{S}_3 définie par :

$$
\mathbf{S}_3 : \begin{cases}
\sigma_1 = \sigma_1' + \frac{2\pi}{3} \\
\sigma_2 = -\sigma_2' - \frac{2\pi}{3} \\
\sigma_3 = -\sigma_3' + \frac{2\pi}{3} \\
\sigma_4 = \sigma_4' - \frac{2\pi}{3}
\end{cases}
$$

permet de trouver les configurations qui réalisent \mathbf{H}_{des}.

6.5.4 Méthode itérative cas non isotrope

Si la pyramide n’est pas isotrope ($a = \cos \beta \neq \sqrt{1/3}$ et $b = \sin \beta \neq \sqrt{2/3}$), les transformations précédentes ne s’appliquent pas. Dans ce cas, la transformation \mathcal{T} définie par :

$$
[\mathcal{T}]_0 = \begin{pmatrix}
\frac{1}{a} & 0 & 0 & 0 \\
0 & \frac{1}{b} & 0 & 0 \\
0 & 0 & \frac{1}{b} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
$$

transforme les vecteurs unitaires \bar{z}_1, \bar{z}_2, \bar{z}_3 et \bar{z}_4 respectivement en z_1, $-z_3$, $-z_4$ et z_2. Elle réalise donc la même substitution que \mathbf{S}_3. De plus elle transforme la direction \bar{u}_0 en direction \bar{z}_0. Toutefois $\mathcal{T} (u_0) = \frac{a\sqrt{3}}{b} z_0$; \mathcal{T} n’est pas unitaire. Ce n’est pas une rotation, bien qu’elle en soit très proche. Si on applique la substitution inverse de \mathbf{S}_3 aux solutions trouvées pour $\mathbf{H}_{des} = \mathcal{T} (\mathbf{H}_{des})$, les configurations résultats σ ne seront pas solution de $\mathbf{H}_{des} = H (\sigma)$, mais elles en seront assez proche, pour servir de base à une résolution itérative.

Cette méthode ne fournissant pas de solution exacte, il paraît inutile de recourir à la transformation \mathcal{T}, et nous préconisons d’utiliser les méthodes précédentes avec $\mathbf{R}_{\frac{2\pi}{3}} x_1$ ou $\mathbf{R}_{\frac{-2\pi}{3}} x_1$ pour trouver les initialisations des méthodes itératives.

Première approche

On cherche σ solution du système :

$$
\begin{cases}
-a \sin \sigma_1 - \cos \sigma_2 + a \sin \sigma_3 + \cos \sigma_4 = H_{des}^4 \\
\cos \sigma_1 - a \sin \sigma_2 - \cos \sigma_3 + a \sin \sigma_4 = H_{des}^3 \\
b \sin \sigma_1 + b \sin \sigma_2 + b \sin \sigma_3 + b \sin \sigma_4 = H_{des}^2 \\
\sigma_1 - \sigma_2 + \sigma_3 - \sigma_4 = 4 \gamma
\end{cases}
$$

C’est un système non-linéaire de la forme $F (\sigma) = \mathbf{S}$ qui à pour jacobienne la matrice \mathbf{J} donnée par :

$$
\mathbf{J}_4 = \begin{pmatrix}
-a \cos \sigma_1 & \sin \sigma_2 & a \cos \sigma_3 & -\sin \sigma_4 \\
-\sin \sigma_1 & -a \cos \sigma_2 & \sin \sigma_3 & a \cos \sigma_4 \\
b \cos \sigma_1 & b \cos \sigma_2 & b \cos \sigma_3 & b \cos \sigma_4 \\
1 & -1 & 1 & -1
\end{pmatrix}
$$

A partir de l’initialisation σ calculée par les transformations approchées décrites ci-avant, on applique à ce système l’algorithme de Newton-Ralphson décrit au paragraphe 6.5.2. Ici le système linéaire à résoudre $\Delta \mathbf{S} = \mathbf{J}_4 \Delta \sigma$ est d’ordre 4. La matrice \mathbf{J}_4 est la même pour les politiques U et V (et peut même être utilisée pour la politique Z).
Deuxième approche

A partir de l’initialisation calculée par les transformations approchées, on projette cette configuration en sur l’hyperplan \(\sigma_1 - \sigma_2 + \sigma_3 - \sigma_4 - 4\gamma = 0 \) par la transformation :

\[
\begin{pmatrix}
\sigma_1 \\
\sigma_2 \\
\sigma_3 \\
\sigma_4
\end{pmatrix} = \begin{pmatrix}
\sigma_1 \\
\sigma_2 \\
\sigma_3 \\
\sigma_4
\end{pmatrix} - \frac{1}{4}(\sigma_1 - \sigma_2 + \sigma_3 - \sigma_4 - 4\gamma) \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}
\]

A partir de cette configuration projetée, on calcule les variables auxiliaires \(X, Y, Z \) initiales et \(\gamma \) par :

\[
\begin{cases}
X = \frac{\sigma_1 - \sigma_3}{2} \\
Y = \frac{\sigma_2 - \sigma_4}{2} \\
Z = \frac{\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4}{4} \\
\gamma = \frac{\sigma_1 - \sigma_2 + \sigma_3 - \sigma_4}{4}
\end{cases}
\]

On cherche ensuite la solution de \(H_\gamma(X) = H_{\gamma^{des}} \) par la méthode de Newton-Raphson du paragraphe 6.5.2, avec ici :

\[
H_\gamma(X) = 2 \begin{pmatrix}
-a \cos (Z + \gamma) \sin X + \sin (Z - \gamma) \sin Y \\
-\sin (Z + \gamma) \sin X - a \cos (Z - \gamma) \sin Y \\
b \sin (Z + \gamma) \cos X + b \sin (Z - \gamma) \cos Y
\end{pmatrix}
\]

et \(J_\gamma = \frac{\partial H_\gamma}{\partial X} \), soit :

\[
J_\gamma = 2 \begin{pmatrix}
-a \cos (Z + \gamma) \cos X & \sin (Z - \gamma) \cos Y & a \sin (Z + \gamma) \sin X + \cos (Z - \gamma) \sin Y \\
-\sin (Z + \gamma) \cos X & -a \cos (Z - \gamma) \cos Y & -\cos (Z + \gamma) \sin X + a \sin (Z - \gamma) \sin Y \\
-b \sin (Z + \gamma) \sin X & -b \sin (Z - \gamma) \sin Y & b \cos (Z + \gamma) \cos X + b \cos (Z - \gamma) \cos Y
\end{pmatrix}
\]

Les configurations solutions sont finalement obtenues, à partir des solutions \((X, Y, Y) \) fournies par l’algorithme de Newton, par :

\[
\begin{cases}
\sigma_1 = Z + X + \gamma \\
\sigma_2 = Z + Y - \gamma \\
\sigma_3 = Z - X + \gamma \\
\sigma_4 = Z - Y - \gamma
\end{cases}
\]

Dans cette deuxième approche, le système linéaire à résoudre \(\Delta H = J_\gamma \Delta X \) est d’ordre 3. La matrice \(J_\gamma \) dépend de la politique choisie.

6.6 Génération de quelques moments cinétiques particuliers

Nous nous limiterons dans ce chapitre au cas de la politique \(Z \).

Etudions la résolution du système :

\[
\begin{cases}
-a \cos Z \sin X + \sin Z \sin Y = \frac{1}{4}H_x = P \\
-\sin Z \sin X - a \cos Z \sin Y = \frac{1}{4}H_y = Q \\
b \sin Z (\cos X + \cos Y) = \frac{1}{4}H_z = R
\end{cases}
\]

(6.20)
dans un certain nombre de cas particuliers.

Rappelons (cf. relation 6.13) que la résolution des deux premières équations en \(\sin X \) et \(\sin Y \) donne :

\[
\begin{pmatrix}
\sin X \\
\sin Y
\end{pmatrix} = \frac{1}{a^2 + b^2 \sin^2 Z} \begin{pmatrix}
-aP \cos Z - Q \sin Z \\
P \sin Z - aQ \cos Z
\end{pmatrix}
\]

(6.21)

6.6.1 Génération d’un moment selon \(Oz_0 \)

On considère la réalisation d’un moment cinétique tel que \(H_x = H_y = P = Q = 0 \) et \(H_z = 2R \).

Comme \(a^2 + b^2 \sin^2 Z > 0 \), les relations \(P = Q = 0 \) et 6.21 imposent :

\[\sin X = \sin Y = 0 \]

Avec \(\gamma = 0 \), on génère les deux solutions distinctes à l’origine \((R = 0) \) pour \(X = Y = Z = 0 \) et pour \(X = Y = 0 \) et \(Z = \pi \). Il en résulte qu’on peut se limiter à :

\[\cos X = \cos Y = 1 \]

D’où :

\[2b \sin Z = \frac{1}{2} H_z \rightarrow \sin Z = \frac{H_z}{4b} \]

Les deux solutions acceptables pour \(\sin Z = \frac{H_z}{4b} \) sont :

\[Z_1 = \arcsin \left(\frac{H_z}{4b} \right) \] et \(Z_2 = \pi - Z_1 \)

Un moment cinétique d’axe \(Oz_0 \) est généré par les trajectoires :

\[
\begin{cases}
X = 0 \\
Y = 0 \\
Z = \arcsin \left(\frac{H_z}{4b} \right) \\
\gamma = 0
\end{cases}
\]

\[
\begin{cases}
X = 0 \\
Y = 0 \\
Z = \pi - \arcsin \left(\frac{H_z}{4b} \right) \\
\gamma = 0
\end{cases}
\]

Remarque : Ces deux solutions conduisent aux trajectoires suivantes en configuration :

\[\sigma = (\delta, \delta, \delta, \delta)^T \] et \[\sigma = (\pi - \delta, \pi - \delta, \pi - \delta, \pi - \delta)^T \]

avec \(\delta = \arcsin \left(\frac{H_z}{4b} \right) \), qui génèrent l’axe \(Oz_0 \) pour \(-4b < H_z < 4b \) \((= 3.266) \). Ce sont les TCS\(_k_0 \)

présentées en section 4.8.

6.6.2 Génération d’un moment selon \(Ox_0 \)

Toujours avec \(\gamma = 0 \), \(H_y = H_z = 0 \) impliquent :

\[
\begin{cases}
\sin Z = 0 \text{ ou } \cos X = -\cos Y \\
\sin Z \sin X = -a \cos Z \sin Y
\end{cases}
\]

Comme pour générer un moment cinétique nul, la solution de Kurokawa impose \(X = Y = 0 \) ou \(\pi \), il en résulte que le cas \(\cos X = -\cos Y \) n’appartient pas aux solutions de Kurokawa, et donc que \(\sin Z = 0 \).
6.6 GÉNÉRATION DE QUELQUES MOMENTS CINÉTIQUES PARTICULIERS

Le moment cinétique d’axe O_{x_0} est généré par les trajectoires :

\[
\begin{align*}
X &= \arcsin \left(\frac{H_x}{2a} \right) \\
Y &= 0 \\
Z &= 0 \\
\gamma &= 0 \\
\quad \text{et} \quad
X &= \pi + \arcsin \left(\frac{H_x}{2a} \right) \\
Y &= \pi \\
Z &= 0 \\
\gamma &= 0
\end{align*}
\]

Remarque : Ces deux solutions conduisent aux trajectoires suivantes en configuration :

$\sigma = (-\delta, 0, \delta, 0)^T$ et $\sigma = (\pi + \delta, 0, \pi - \delta, 0)^T$

avec $\delta = \arcsin \left(\frac{H_x}{2a} \right)$, qui génèrent l’axe O_{x_0} sur $-2a < H_x < 2a$ ($= 1.1547$). Ce sont les TME$_{x_0, A}$ et TME$_{y_0, A}$ présentées en section 4.5.

6.6.3 Génération d’un moment selon O_{y_0}

Dans ce cas $H_x = H_z = 0$, ce qui implique :

\[
\begin{align*}
\sin Z &= 0 \text{ ou } \cos X = -\cos Y \\
\sin Z \sin Y &= a \cos Z \sin X
\end{align*}
\]

Comme précédemment le cas $\cos X = -\cos Y$ n’appartient aux solutions de Kurokawa. Il en résulte que $\sin Z = 0$.

Le moment cinétique d’axe O_{y_0} est généré par les trajectoires :

\[
\begin{align*}
X &= 0 \\
Y &= -\arcsin \left(\frac{H_y}{2a} \right) \\
Z &= 0 \\
\gamma &= 0
\end{align*}
\quad \text{et} \quad
\begin{align*}
X &= \pi \\
Y &= \pi + \arcsin \left(\frac{H_y}{2a} \right) \\
Z &= 0 \\
\gamma &= 0
\end{align*}
\]

Remarque : Ces deux solutions conduisent aux trajectoires suivantes en configuration :

$\sigma = (0, -\delta, 0, +\delta)^T$ et $\sigma = (0, \pi + \delta, 0, \pi - \delta)^T$

avec $\delta = \arcsin \left(\frac{H_y}{2a} \right)$, qui génèrent l’axe O_{y_0} sur $-2a < H_y < 2a$ ($= 1.1547$)

6.6.4 Génération d’un moment selon u_0

Dans ce cas $H_z = 0$ implique :

$\sin Z = 0 \text{ ou } \cos X = -\cos Y$

Comme précédemment le cas $\cos X = -\cos Y$ n’appartient aux solutions de Kurokawa. Il en résulte que $\sin Z = 0$.

Par ailleurs $H_x = H_y$ implique :

\[a \cos Z (\sin Y - \sin X) + \sin Z (\sin Y + \sin X) = 0\]
D’où :
\[\sin X = \sin Y = s \]

De plus, comme à \(X = Y \) à l’origine, il en résulte que :
\[\cos X = \cos Y \]

Notons \(H_u = \frac{1}{\sqrt{2}} (H_x + H_y) \) l’abscisse du moment cinétique sur l’axe \(u_0 \). Il vient :
\[H_u = -2a\sqrt{2}\sin X \]

Il en résulte qu’un moment cinétique d’axe \(u_0 \) est généré par les trajectoires :
\[
\begin{align*}
X &= -\arcsin \left(\frac{H_u}{2a\sqrt{2}} \right) \\
Y &= -\arcsin \left(\frac{H_u}{2a\sqrt{2}} \right) \\
Z &= 0 \\
\gamma &= 0
\end{align*}
\]
\[
\begin{align*}
X &= \pi + \arcsin \left(\frac{H_u}{2a\sqrt{2}} \right) \\
Y &= \pi + \arcsin \left(\frac{H_u}{2a\sqrt{2}} \right) \\
Z &= 0 \\
\gamma &= 0
\end{align*}
\]

Remarque : Ces deux solutions conduisent aux trajectoires suivantes en configuration :
\[\sigma = (-\delta, -\delta, +\delta, +\delta)^T \text{ et } \sigma = (\pi + \delta, \pi + \delta, \pi - \delta, \pi - \delta)^T \]
avec \(\delta = \arcsin \left(\frac{H_u}{2a\sqrt{2}} \right) \), qui génèrent l’axe \(Ou_0 \) sur \(-2a\sqrt{2} < H_u < 2a\sqrt{2} \) \((= 1.633)\)

6.6.5 Génération d’un moment selon \(v_0 \)

Comme précédemment \(H_z = 0 \) implique \(\sin Z = 0 \).

Par ailleurs \(H_x = -H_y \) implique :
\[a \cos Z (\sin Y + \sin X) = 0 \]

D’où :
\[\sin X = -\sin Y \]

De plus, comme à \(X = Y \) à l’origine, il en résulte que :
\[\cos X = \cos Y \]

Notons \(H_v = \frac{1}{\sqrt{2}} (-H_x + H_y) \) l’abscisse du moment cinétique sur l’axe \(v_0 \). Il vient :
\[H_v = 2a\sqrt{2}\sin X \]

il en résulte qu’un moment cinétique d’axe \(u_0 \) est généré par la trajectoire :
\[
\begin{align*}
X &= \arcsin \left(\frac{H_v}{2a\sqrt{2}} \right) \\
Y &= -\arcsin \left(\frac{H_v}{2a\sqrt{2}} \right) \\
Z &= 0 \\
\gamma &= 0
\end{align*}
\]
\[
\begin{align*}
X &= \pi - \arcsin \left(\frac{H_v}{2a\sqrt{2}} \right) \\
Y &= \pi + \arcsin \left(\frac{H_v}{2a\sqrt{2}} \right) \\
Z &= 0 \\
\gamma &= 0
\end{align*}
\]

Remarque : Ces deux solutions conduisent aux trajectoires suivantes en configuration :
6.6 Génération de quelques moments cinétiques particuliers

\[\sigma = (-\delta, \delta, +\delta, -\delta)^T \text{ et } \sigma = (\pi + \delta, \pi - \delta, \pi - \delta, \pi + \delta)^T \]

avec \(\delta = \arcsin \left(\frac{H_v}{2a} \right) \), qui génèrent l’axe \(O_{V0} \) sur \(-2a\sqrt{2} < H_v < 2a\sqrt{2} (= 1.633)\)

6.6.6 Génération d’un moment du plan horizontal \(O_{X0Y0} \)

Plus généralement, pour générer un moment cinétique tel que :

\[H_z = 0 \]

\(X = Y = 0 \) ou \(\pi \) pour l’origine implique :

\[\sin Z = 0 \text{ et } \cos Z = 1 \]

D’où :

\[H = \begin{pmatrix} -2a \sin X \\ -2a \sin Y \\ 0 \end{pmatrix} \]

Dans le plan \(H_z = 0 \), le moment cinétique est limité au carré \(|H_x| \leq 2a, |H_y| \leq 2a, \) de demi-cotés 2a parallèles aux axes \(\bar{x}_0 \) et \(\bar{y}_0 \).

Par ailleurs dans ce cas le jacobien vaut :

\[|J| = 8a^2 b \cos X \cos Y (\cos X + \cos Y) \]

Partant de \(\mathbf{H} = 0 \) avec \(X = Y = 0 \), on a \(\cos X = \cos Y = 1 \), d’où \(|J| = 16a^2 b \) à l’origine.

Lorsque \(X \) et \(Y \) varient en plus ou en moins (\(\cos X + \cos Y \)) reste positif tant que \(\cos X \) ou \(\cos Y \) ne changent pas de signe. Il en résulte que \(|J| \) s’annule pour la première fois lorsque \(\cos X \) ou \(\cos Y \) s’annule, c’est-à-dire sur les frontières externes du carré.

6.6.7 Les solutions parasites

Le système 6.20 présente des solutions au delà de ce carré, mais elles ne s’obtiennent pas par continuité à partir de la solution de Kurokawa (qui est telle que \(X = Y = 0 \) ou \(\pi \) pour \(\bar{H} = 0 \)). Ces solutions qui sont fournies par l’algorithme d’inversion analytique, peuvent être mise en évidence dans le cas de la génération de l’axe \(O_{X0} \).

En effet, si on revient sur les solutions du cas \(H_y = H_z = 0, H_x = 2P \), nous avions écarté la solution telle que \(\sin Z \neq 0 \) et \(\cos X + \cos Y = 0 \).

Prenez ce cas en compte.

\(H_y = 0 \) implique \(-\sin Z \sin X - a \cos Z \sin Y = 0.\)

La relation \(\cos X + \cos Y = 0 \) implique \(s = \sin X = \pm \sin Y. \) Il vient : \(-s (\sin Z \pm a \cos Z) = 0.\)

Ecartons le cas particulier \(s = 0 \) qui ne fournit que \(\bar{H} = 0 \) pour les solutions \(\bar{(X = 0, Y = \pi, \forall Z)} \) et \(\bar{(X = \pi, Y = 0, \forall Z)} \) qui correspondent à la TMN \((\sigma, \sigma + \pi, \sigma, \sigma + \pi). \)

Il vient \(\tan Z = \mp \alpha, \) c’est-à-dire \(Z = \mp \alpha, \cos Z = \frac{1}{\sqrt{1 + a^2}} \) et \(\sin Z = \mp \frac{a}{\sqrt{1 + a^2}}. \)

D’où \(H_x = -\frac{4a}{\sqrt{1 + a^2}} \sin X \)

Réf. DCSD-2009_008-NOT-005-1.0
L’axe Ox_0 peut être généré par la trajectoire \(X = X, \quad Y = \pi \pm X, \quad Z = \mp \alpha \)
soit $\mathbf{H} = 0$ pour \(X = 0, \quad Y = \pi, \quad Z = \mp \alpha \), c’est-à-dire pour $\sigma = (\mp \alpha, \mp \alpha + \pi, \mp \alpha, \mp \alpha - \pi)^T$ alors qu’en politique Z seul sont admis $(0, 0, 0, 0)^T$ ou $(\pi, \pi, \pi, \pi)^T$.
Lorsque X varie de $\frac{\pi}{2}$ à $-\frac{\pi}{2}$ en passant par 0, H_x varie de $-|H_x|_{\text{max}}$ à $|H_x|_{\text{max}}$ en passant par 0 avec $|H_x|_{\text{max}} = \frac{4a}{\sqrt{1 + a^2}}$ ($=2$ dans le cas de la pyramide isotrope). Les frontières du carré $|H_x| = 2a$ ($=1.1547$) sont dépassées pour $|\sin X| > 0.5\sqrt{1+a^2}$ ($|X| > 35.26$ degrés dans le cas de la pyramide isotrope).
Remarquons finalement que pour cette deuxième solution $|J| = -\frac{16ba^2}{\sqrt{1+a^2}} \sin^2 X \cos X$ est nul, non seulement aux extrémités, mais également à l’origine en $\mathbf{H} = 0$, ce qui la contre indique totalement.

6.7 Domaines de travail sécurisés

Les domaines de travail sécurisés dans l’espace des moments cinétiques sont constitués par l’ensemble des moments cinétiques atteints en partant de l’origine $\mathbf{H} = 0$, limités par la frontière où $|J| = 0$, pour les trois politiques Z, U et V.
La non-linéarité de l’équation $|J| = 0$ ne permet d’obtenir une forme analytique de ces frontières. En conséquence on les génère par des méthodes numériques itératives.
Nous n’avons généré que le domaine associé la politique Z, car les domaines pour les politiques U et V se déduisent du domaine de la politique Z par une rotation de ± 120 degrés autour de z_1.

6.7.1 Méthode de génération du domaine de travail sécurisé

Pour obtenir le domaine de travail nous avons considéré des coupes par des plans $H_z = \text{cte}$ pour H_z variant de $-4b$ à $+4b$ ($=3.266$), par pas ΔH_z de $b/30$ ($=0.0272$).
Pour chaque coupe, nous avons considéré un point initial sur l’axe Oz_0, $\mathbf{H}^0 = (0, 0, H_z)$ et cherché à réaliser le moment cinétique maximal sur les rayons vecteurs horizontaux partant de cet axe, pour des azimuts θ allant de 0 à 360 degrés, par pas $\Delta \theta$ de 1.5 degrés. Nous cherchons, pour chaque H_z et chaque θ, le moment cinétique d’expression :

$$
\mathbf{H}_k = \begin{pmatrix}
\lambda_k \cos \theta \\
\lambda_k \sin \theta \\
H_z
\end{pmatrix}
$$

qui possède un λ_k maximal, à partir de $\lambda_0 = 0$.
Etant donné un certain λ_k inférieur à λ_{max}, tel que $\mathbf{H}_k = \mathcal{K}(\mathbf{S}_k)$ est atteint pour une certaine configuration $\mathbf{S}_k = (X_k, Y_k, Z_k)$, nous considérons un $\mathbf{H}_{\text{des}} = \mathbf{H}_k + \Delta \lambda \mathbf{u}_\theta$ avec $\mathbf{u}_\theta = (\cos \theta, \sin \theta, 0)$ et cherchons à trouver une configuration \mathbf{S} telle que $\mathbf{H}_{\text{des}} = \mathcal{K}(\mathbf{S})$. Si $\Delta \lambda$ est trop grand, cette configuration peut ne pas exister. On calcule donc :

$$
\Delta \mathbf{S} = \mathbf{J}^{-1}(\Delta \lambda \mathbf{u}_\theta)
$$

puis $\mathbf{H} = \mathcal{K}(\mathbf{S}_k + \Delta \mathbf{S})$, et on diminue $\Delta \lambda$ par dichotomie jusqu’à ce que :

$$
\| \mathbf{H}_{\text{des}} - \mathcal{K}(\mathbf{S}_k + \mathbf{J}^{-1}(\Delta \lambda \mathbf{u}_\theta)) \| < \max \left(\frac{\Delta \lambda}{20}, \varepsilon_h \right)
$$
où ε_h est la précision requise sur le moment cinétique.

Quand on est loin d’une singularité, l’approximation linéaire $\mathcal{H}(\mathbf{S}_k + \Delta \mathbf{S}) = \mathcal{H}(\mathbf{S}_k) + \mathbf{J}\Delta \mathbf{S}$ est assez bonne, ce qui fait qu’on peut utiliser des valeurs assez grandes de $\Delta \lambda$. Par contre au voisinage d’une singularité, l’approximation linéaire n’est plus valable, les valeurs $\mathcal{H}(\mathbf{S}_k + \Delta \mathbf{S})$ prennent des valeurs aberrantes. Il devient difficile de trouver des moments cinétiques acceptables dans le voisinage du dernier \mathbf{H}_k valide calculé, ce qui explique la difficulté de générer l’enveloppe du domaine de travail par continuité.

On arrête la diminution de $\Delta \lambda$ (par dichotomie) lorsque $\Delta \lambda$ devient inférieur à ε_h. On considère alors, qu’on est arrivé au voisinage de la singularité.

Cette procédure permet d’atteindre l’enveloppe extérieure par une évolution continue depuis $\mathbf{H} = H_j \mathbf{z}_0$. Or ce moment cinétique est réalisable par deux configurations différentes, à savoir :

$$
\begin{cases}
X = 0 \\
Y = 0 \\
Z = \arcsin \left(\frac{H_j}{4b} \right)
\end{cases}
$$

et

$$
\begin{cases}
X = 0 \\
Y = 0 \\
Z = \pi - \arcsin \left(\frac{H_j}{4b} \right)
\end{cases}
$$

La première configuration est celle qui correspond à $\sigma_0 = (0, 0, 0) \,^T$ pour $\mathbf{H} = 0$, et la deuxième est celle qui correspond à $\sigma_0 = (\pi, \pi, \pi) \,^T$ pour $\mathbf{H} = 0$.

Le moment cinétique maximal atteint dépend de la configuration initiale choisie. Il **y a ainsi deux frontières qui sont symétriques l’une de l’autre par rapport à l’origine.** Pour limiter les calculs, nous n’avons travaillé que sur celle qui est issue de $\sigma_0 = (0, 0, 0) \,^T$ pour $\mathbf{H} = 0$. Par ailleurs, nous avons pris en compte les symétries suivantes (dans le cas de la politique Z) :

1. Si $(X, Y, Z) \rightarrow (H_x, H_y, H_z)$, alors $(X, -Y, -Z) \rightarrow (H_x, -H_y, -H_z)$, ce qui implique une symétrie par rapport à Ox_0,
2. si $(X, Y, Z) \rightarrow (H_x, H_y, H_z)$, alors $(-X, Y, -Z) \rightarrow (-H_x, H_y, -H_z)$, ce qui implique une symétrie par rapport à Oy_0,
3. enfin, si $(X, Y, Z) \rightarrow (H_x, H_y, H_z)$, alors $(-X, -Y, Z) \rightarrow (-H_x, -H_y, H_z)$, ce qui implique une symétrie par rapport à Oz_0.

Les symétries 1 et 2 (produit de 2 symétries = rotation) impliquent une rotation de 180 degrés autour de Oz_0, ce qui revient à la symétrie 3.

Enfin, on remarquera qu’il n’y a pas de symétrie centrale par rapport à O. Les domaines issus de $(0, 0, 0) \,^T$ et $(\pi, \pi, \pi) \,^T$ sont différents dont l’un de l’autre.

6.7.2 Représentation 3D des surfaces singulières

La figure 6.1 représente la frontière singulière atteinte depuis $(0, 0, 0)$ en politique Z. On constate que pour $|H_z| > 2b$, l’enveloppe est très proche de l’enveloppe globale qui est voisine de la sphère de rayon $4b$ ($= 3.266$). Par contre, pour $|H_z| < 2b$, l’enveloppe se rapproche de l’axe Oz_0.

La figure 6.2 représente la frontière singulière atteinte depuis $(-\frac{2\pi}{3}, \frac{2\pi}{3}, -\frac{2\pi}{3})$ en politique U, vu de dessus (en se plaçant au sommet de l’axe Oz_0). On peut considérer que c’est la frontière de la politique Z, mais vu de coté, depuis la première bissectrice du plan x_0Oy_0, et ayant subi une rotation de 45 degrés autour de cette bissectrice. Cette vue permet d’apprécier la diminution du domaine de travail (en politique Z) pour $|H_z| < 2b$.

Réf. DCSD-2009_008-NOT-005-1.0
6.7.3 Repliement des surfaces singulières

Le volume intérieur à ces frontières n’est pas convexe. Ceci se voit immédiatement sur les figures 3D des surfaces singulières. Nous n’avons pas réussi à le mettre en évidence de manière analytique, car en dehors de la coupe par le plan $H_z = 0$, où la section de la surface est un carré de coté $4a$ (convexe), les autres sections ont des formes extrêmement complexes. Nous avons donc choisi de le mettre en évidence sur un exemple numérique.

La figure 6.3 montre sur le graphe du haut, la coupe de l’enveloppe 3D en politique Z, par le plan $H_z = 2b/3$. En fait les 4 segments radiaux semblables au segment AB ne correspondent pas à la surface $|J| = 0$. Le déterminant n’est nul qu’aux points A et B.

Sur le graphe du bas, nous avons représenté en trait plein l’évolution du déterminant le long du segment OB (pour $\theta = \pi/4$), en fonction du rayon k_{OM}. Le déterminant vaut $|J| = 16a^2b (= 4.3546)$ à l’origine. Il diminue de manière monotone en fonction de k_{OM} jusqu’à tomber au voisinage de 0 pour $|CD| \simeq 1.05$. L’évolution du déterminant sur le long de CD est tracé sur le graphe, en pointillés.

Il en résulte que la vrai enveloppe externe passe par les point A, D et B. Notre méthode de tracé (recherche des points extrêmes sur les rayons vecteurs issus des points de l’axe Oz_0 ne permet pas d’accéder aux portions de surface cachées par une première partie de la surface singulière.

La figure 6.4 montre les coupes de l’enveloppe par des plans verticaux contenant l’axe Oz_0, pour les azimuts θ variant de 0 à 90 degrés par pas de 1.5 degrés.

La figure 6.5 montre, les mêmes coupes en projection dans le plan vertical x_0Oz_0. La courbe en tirets représente, pour chaque ordonnée H_z, la plus petite distance de l’axe Oz_0 à la coupe de l’enveloppe par le plan horizontal $H_z = cte$. C’est la courbe interne tangente à toutes les coupes verticales que nous nommerons profil vertical interne sécurisé. Cette courbe est interne aux enveloppes issues de $(0,0,0,0)$ et de (π,π,π,π).

Cette courbe montre que pour $H_z < 3$ la plus petite distance est toujours supérieure à $2a (= 1.1547)$.

La figure 6.6 montre, en projection dans le plan horizontal x_0Oy_0, les coupes du domaine par les plans horizontaux $H_z = cte$ de 0 à $4b (= 3.266)$ par pas de $b/30 (= 0.0272)$. Pour $H_z < 3$ les courbes sont tracées en trait plein, et en pointillé, au delà.

6.7.4 Volumes simplifiés sécurisés de révolution

En politique Z, une enveloppe simplifiée, proche des enveloppes réelles issues de $(0,0,0,0)$ et de (π,π,π,π), et sans singularités internes peut être obtenue en considérant le volume de révolution obtenu à partir du profil vertical interne sécurisé.

La figure 6.7 montre la projection des ces enveloppes dans le plan horizontal x_0Oy_0. On y trouve :
- en pointillés, la projection d’une “cacahuète” d’axe u_0 pour la politique U,
- en traits d’axe, la projection d’une “cacahuète” d’axe v_0 pour la politique V,
- en traits plein, deux cercles qui correspondent à la “cacahuète” d’axe z_0 pour la politique Z, vu de dessus.
6.7 Domaines de travail sécurisés

Sur cette figure :

\[h_{\text{max}} = 4b \quad (= 3.266) \]
\[r_{\text{max}} = 2 \]
\[r_{\text{min}} = 2a \quad (= 1.1547) \]

6.7.5 Modèle simplifié analytique

Le profil vertical de la “cacahuète” ayant été obtenu numériquement, au moyen de calculs itératifs, nous avons cherché à le modéliser par des expressions analytiques afin de pouvoir l’exploiter plus aisément. On peut constater, sur les coupes verticales, que pour \(h_{\text{ell}}>h_{\text{ell}} \) avec \(h_{\text{ell}} \approx 1.08 \), le profil vertical interne sécurisé est proche une ellipse de demi-grand axe \(r_{\text{max}} = 2 \), de centre de cote \(H_z = 2b \) et donc de demi-petit axe \(2b \). Les têtes de la “cacahuète” en politique Z peuvent ainsi être modélisée par l’ellipsoïde :

\[
\frac{H_z^2}{4} + \left(\frac{H_z \pm 2b}{2b} \right)^2 = 1
\]

 avec \(H_z^2 = H_z^2 + H_{\text{ell}}^2 \).
Cette équation peut se mettre sous la forme :

\[
H_r = \mathcal{S}(H_z) = \sqrt{4 - \left(\frac{H_z \pm 2b}{2b} \right)^2}
\]

Le moins correspond à la “cacahuète” \(H_z > h_{\text{ell}} \) et le plus correspond à la “cacahuète” \(H_z < -h_{\text{ell}} \).

Pour \(|H_z| < h_{\text{ell}} \) nous avons approximé le profil vertical par un polynôme pair (pour conserver la symétrie par rapport au plan horizontal) de degré 6 d’équation :

\[
H_r = \mathcal{P}(H_z) = 2a + c_2 H_z^2 + c_4 H_z^4 + c_6 H_z^6
\]

Pour fixer les 3 paramètres inconnus de ce polynôme nous imposons :

- \(\mathcal{P}(h_{\text{ell}}) = \mathcal{S}(h_{\text{ell}}) \)
- \(\mathcal{P}(a) = p_a \)
- \(\dot{\mathcal{P}}(h_{\text{ell}}) = \dot{\mathcal{S}}(h_{\text{ell}}) \)

où \(p_a \) est la valeur numérique lue sur le profil vertical interne sécurisé pour \(H_z = a \), qui vaut \(p_a = 1.357 \) dans le cas de la pyramide isotope.

Les trois coefficients \(c_6, c_4, c_2 \) sont solutions du système :

\[
\begin{pmatrix}
 h_{\text{ell}}^6 & h_{\text{ell}}^4 & h_{\text{ell}}^2 \\
 6h_{\text{ell}}^5 & 4h_{\text{ell}}^3 & 3h_{\text{ell}} \\
 a^6 & a^4 & a^2
\end{pmatrix}
\begin{pmatrix}
 c_6 \\
 c_4 \\
 c_2
\end{pmatrix} =
\begin{pmatrix}
 \mathcal{S}(h_{\text{ell}}) - 2a \\
 \mathcal{S}'(h_{\text{ell}}) \\
 p_a - 2a
\end{pmatrix}
\]

Dans le cas de la pyramide isotope, on a les valeurs numériques suivantes :

- \(h_{\text{ell}} = 1.08 \)
- \(a = 0.5774 \)
- \(\mathcal{S}(h_{\text{ell}}) = 1.882 \)
- \(\dot{\mathcal{S}}(h_{\text{ell}}) = 0.4408 \)
- \(p_a = 1.357 \)

On obtient alors le polynôme :

\[
H_r = 2a + c_2 H_z^2 + c_4 H_z^4 + c_6 H_z^6
\]
La stratégie d'évitement de Kurokawa

\[\mathcal{P}(H_z) = 1.1547 + 0.4236H_z^2 + 0.7022H_z^4 - 0.4551H_z^6 \]

(6.23)

La figure 6.8 représente les profil verticaux internes sécurisés modèle (en trait plein) et réel (en pointillés). Ils sont quasiment superposés. Les séparations entre les modèles elliptiques et polynomiaux sont figurées par deux traits d’axe horizontaux.

En conclusion, le modèle simplifié analytique du volume sécurisé de révolution en politique Z est donné par :

\[
\begin{cases}
|H_z| > h_{ell} \Rightarrow \frac{H_z^2 + H_z^4}{4} + \frac{(H_z + 2b)^2}{4b^2} < 1 \\
|H_z| < h_{ell} \Rightarrow H_z^2 + H_z^6 < \mathcal{P}(H_z)
\end{cases}
\]

avec \(\mathcal{P}(H_z) \) donné par 6.23 et \(h_{ell} = 1.08 \) dans le cas de la pyramide isotrope.

6.7.6 Domaine convexe analytique

Au vu des courbes précédentes, il apparaît qu'on peut construire un convexe maximal à l'intérieur des surfaces singulières de Kurokawa en le limitant (dans le cas de la politique Z) à l'intérieur du cylindre d'axe \(Oz_0 \) et de rayon \(2a \) (=1.1547). Ce cylindre coupe l'enveloppe sécurisée au niveau des plans horizontaux \(H_z = 2b(1 + b) = 2.97 \) pour la pyramide isotrope). Au delà de ces plans, l’enveloppe de Kurokawa est voisine de l'ellipsoïde de révolution d’équation 6.22. A peu de chose près, on peut approcher l’ellipsoïde de révolution par la sphère de rayon \(r_{cvx} = 2\sqrt{1 + 2b^3 + b^4} \) (soit \(r_{cvx} \approx 3.18 \)).

En conclusion, en politique Z, nous préconisons de limiter \(H \) par le volume convexe intérieur au volume sécurisé de révolution, définit par :

\[
\begin{cases}
H_z^2 + H_z^6 < 4a^2 \\
H_z^2 + H_z^4 + H_z^6 < 4(1 + 2b^3 + b^4)
\end{cases}
\]

La figure 6.9 montre les trois convexes intérieurs des politiques Z, U et V en projection dans le plan horizontal \(x_0Oy_0 \).

6.7.7 Domaine de recouvrement des trois domaines

Le domaine de recouvrement des trois domaines convexe est l’intersection des 3 cylindres. Il contient la sphère de rayon \(2a \). Les points les plus éloignés sont sur les 4 bissectrices des 2 plans verticaux \(x_0Oz_0 \) et \(y_0Oz_0 \), à la distance \(\sqrt{6}a \) (=1.414 en isotrope). Ce sont les moments de composantes :

\[
\begin{pmatrix}
2a \\
0 \\
a\sqrt{2}
\end{pmatrix}, \begin{pmatrix}
2a \\
0 \\
a\sqrt{2}
\end{pmatrix}, \begin{pmatrix}
-2a \\
0 \\
-a\sqrt{2}
\end{pmatrix}, \begin{pmatrix}
-2a \\
0 \\
-a\sqrt{2}
\end{pmatrix}
\]

En résumé, les surfaces qui définissent le domaine commun aux 3 convexes sont comprises dans l’intervalle :

\[2a \leq \|H\| \leq a\sqrt{6}a \]

Le domaine de recouvrement des trois domaines sécurisés, mais non convexes, s’étend plus loin dans les directions de ces 8 bissectrices. Ces bissectrices coupent le domaine sécurisé au niveau de
6.8 Mise en oeuvre de la méthode de Kurokawa

6.8.1 Choix d’une des trois politiques

La politique à utiliser est celle dont le domaine de révolution sécurisé contient intégralement la trajectoire en moment cinétique. Si plusieurs politiques contiennent cette trajectoire, on peut choisir la politique dont la trajectoire en moment cinétique s’approche le moins du domaine sécurisé : maximum de la distance minimum à l’enveloppe du domaine de révolution. Une calcul itératif est nécessaire pour évaluer ces critères.

Si on ne prend en compte que le moment cinétique maximal \(H_{\text{max}} \) atteint sur la trajectoire, on choisira la politique qui minimise la distance de \(H_{\text{max}} \) à l’un des trois axes \(z_0, u_0 \) ou \(v_0 \) à savoir :

\[
\begin{align*}
 d_z^2 &= \| z_0 \times H_{\text{max}} \|^2 = [H_x^2 + H_z^2] \\
 d_u^2 &= \| u_0 \times H_{\text{max}} \|^2 = [H_x^2 + \frac{1}{2} (H_x - H_y)^2] \\
 d_v^2 &= \| v_0 \times H_{\text{max}} \|^2 = [H_z^2 + \frac{1}{2} (H_x + H_y)^2]
\end{align*}
\]

Ainsi, si \(d_u^2 < d_z^2 \) et \(d_u^2 < d_v^2 \), on choisira la politique \(U \).

6.8.2 Méthode de changement de politique

Supposons qu’après avoir réalisé une trajectoire en politique \(Z \), on ait à réaliser une trajectoire en politique \(U \).

Nous faisons l’hypothèse que le moment cinétique initial est réalisable dans les trois politiques. Ceci n’est garanti que si :

\[\| H_{\text{init}} \| < 2a \]

Supposons, à titre d’exemple que :

\[
H_{\text{init}} = \begin{pmatrix}
H_x \\
H_y \\
H_z
\end{pmatrix}
\]
Ce moment était réalisé par :

\[
\begin{pmatrix}
\sigma_1 \\
\sigma_2 \\
\sigma_3 \\
\sigma_4
\end{pmatrix} \rightarrow \begin{pmatrix}
X = \frac{\sigma_1 - \sigma_3}{\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4} \\
Y = \frac{\sigma_2 - \sigma_4}{\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4} \\
Z = \frac{\sigma_1 + \sigma_2 + \sigma_3 - \sigma_4}{\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4} \\
\gamma = \frac{\sigma_1 - \sigma_2 + \sigma_3 - \sigma_4}{\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4}
\end{pmatrix} \leftrightarrow \begin{pmatrix}
X \\
Y \\
Z
\end{pmatrix} \rightarrow \begin{pmatrix}
\sigma_1 = Z + X + \gamma \\
\sigma_2 = Z + Y - \gamma \\
\sigma_3 = Z - X + \gamma \\
\sigma_4 = Z - Y - \gamma
\end{pmatrix}
\]

Il faut maintenant le réaliser en politique U.

Réaliser \(H_{ini} \) en politique U revient à réaliser :

\[
H'_{ini} = R_{\pi, x_1}(H_{ini}) = \begin{pmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{pmatrix} \begin{pmatrix}
H_x \\
H_y \\
H_z
\end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix}
\frac{1}{\sqrt{2}} (H_x - H_y) + H_z \\
\frac{1}{\sqrt{2}} (H_x - H_y) - H_z \\
H_x + H_y
\end{pmatrix}
\]

en politique Z. Notons \((X', Y', Z', \gamma')\) une solution réalisant \(H'_{ini} \) en politique Z. Il en résulte que \(H'_{ini} \) peut être réalisé en politique Z par :

\[
\begin{cases}
\sigma'_1 = Z' + X' + \gamma' \\
\sigma'_2 = Z' + Y' - \gamma' \\
\sigma'_3 = Z' - X' + \gamma' \\
\sigma'_4 = Z' - Y' - \gamma'
\end{cases}
\]

et en politique U par :

\[
\begin{cases}
\sigma_1 = \sigma'_1 - \frac{2\pi}{\pi} \\
\sigma_2 = \sigma'_2 + \frac{2\pi}{\pi} \\
\sigma_3 = -\sigma'_3 - \frac{2\pi}{\pi} \\
\sigma_4 = -\sigma'_4 + \frac{2\pi}{\pi}
\end{cases}
\]

Résumé : En fait, pour calculer la nouvelle configuration en fonction de l’ancienne, il n’est pas nécessaire de connaître de connaître la politique de cette dernière.

Étant donné une configuration \(\sigma \) qui correspond à une certaine politique, on calcule le moment cinétique \(H \) qu’elle produit :

\[
H = \mathcal{H}(\sigma)
\]

(formule indépendante de la politique initiale).

1. Pour réaliser \(H \) en politique Z, on calcule \(X \) pour \(\gamma = 0 \) par l’algorithme itératif 6.17, \(X = H_{iterZ}(H, X_0) \) à partir de \(X_0 = (0, 0, H_z/4b)^T \) qui réalise la projection de \(H \) sur \(z_0 \), puis le nouveau \(\sigma \) par les formules 6.2 avec \(\gamma = 0 \).

2. Pour réaliser \(H \) en politique U, on calcule \(H' = R_{\pi, x_1} H \), puis, pour \(\gamma = 0 \), \(X' = H_{iterZ}^{-1}(H', X_0) \), à partir de \(X_0' = (0, 0, H_z'/4b)^T \) puis \(\sigma' \) par les formules 6.2 avec \(\gamma = 0 \), puis le nouveau \(\sigma \) par les formules 6.18.

3. Pour réaliser \(H \) en politique V, on calcule \(H' = R_{\pi, x_1} H \), puis, pour \(\gamma = 0 \), \(X' = H_{iterZ}^{-1}(H', X_0) \), à partir de \(X_0' = (0, 0, H_z'/4b)^T \) puis \(\sigma' \) par les formules 6.2 avec \(\gamma = 0 \), puis le nouveau \(\sigma \) par les formules 6.19.
6.9 Petite conclusion sur les stratégies d’évitement

Remarque : La commutation d’une politique à une autre, pour un moment cinétique identique donné réalisable dans les trois politiques, se fait avec des changement de configuration relativement importants. Les écarts maximaux entre les composantes des configurations qui réalisent ce moment varient de 120° à 180° lorsque le module du moment cinétique donné varie de 0 à 1. Si on utilise des trajectoires rectilignes en configuration pour les relier, les moments cinétiquest réalisés le long de la trajectoire s’écartent du moment cinétique donné, proportionnellement au module de ce moment. Le coefficient de proportionnalité entre l’écart maximal et le module du moment donné varie de 0.82 à 3 suivant la direction du moment nominal, et ce coefficient dépend également de la solution choisie comme configuration initiale.

Les directions \(\mathbf{w} \) qui correspondent à une bissectrice des trièdres \((\mathbf{z}_0, \mathbf{u}_0, \mathbf{v}_0)\) sont celles pour lesquelles les politiques de Kurokawa sont les moins bien adaptées. Dans ces cas, le moment cinétique réduit maximal atteignable hors singularité en isotrope est égal à 1.414 dans le cylindre de sécurité convexe et à 2.4244 dans le domaine analytique non convexe.

6.9 Petite conclusion sur les stratégies d’évitement

Si les mouvements à réaliser sont tels qu’il existe un axe privilégié, on peut utiliser la politique de Kurokawa adaptée à cette direction, et de plus on a intérêt à utiliser une pyramide allongée qui privilégie la direction en question.

S’il n’y a pas de direction privilégiée, il n’y a pas de solution miracle qui permette d’utiliser toute la capacité motrice des gyrodynes. Même les politiques de Kurokawa peuvent n’en utiliser que 45 à 77% suivant qu’on se limite à un domaine sécurisé convexe ou non convexe.

Les résultats exceptionnels, mais difficilement gérable des méthodes gains inverse montrent qu’il y a surement une politique nettement plus optimale qui reste encore à trouver.
Figure 6.1 – Frontière singulièrè atteinte depuis (0 ;0,0,0) en politique Z
FIGURE 6.2 – Frontière singulière atteinte depuis \((-\frac{2\pi}{3}, \frac{2\pi}{3}, -\frac{2\pi}{3}, \frac{2\pi}{3})\) en politique U
Figure 6.3 – Coupe de la surface singulière pour $H_z = 2b/3$
Figure 6.4 – Coupes par des plans verticaux axiaux
FIGURE 6.5 – Projection sur x_0Oz_0 des coupes verticales axiales
Figure 6.6 – Coupes du domaine par des plans $H_z = cte$
FIGURE 6.7 – Projection dans le plan horizontal des volumes sécurisés.
6.9 Petite conclusion sur les stratégies d’évitement

FIGURE 6.8 – Profils verticaux internes sécurisés modèle et réel
FigURE 6.9 – Projection dans le plan horizontal des convexes sécurisés.
Chapitre 7

Annexe

7.1 Trajectoires cycliques stables

7.1.1 Cas général

Considérons la trajectoire à motricité effective $\sigma_e(t)$ obtenue par intégration de $\dot{\sigma}_e = Y^\dagger \dot{h}$. Au point courant σ_e, lorsque \dot{h} décrit toutes les directions possibles de H^3, $\dot{\sigma}_e$ décrit la distribution Δ des vecteurs colonnes de Y^\dagger. Pour qu'il existe une hyper-surface intégrale de cette distribution Δ, il faut qu'elle soit involutive. Or les vecteurs colonnes y^\dagger_k de Y^\dagger sont des combinaisons des vecteurs lignes Y :

$$y^\dagger_k = \sum_{i=1}^{3} \lambda_{ik}(t) l_i$$

où les $\lambda_{ik}(t)$ sont les éléments de la matrice inverse de $F = YY^T$. Or les y^\dagger_k sont orthogonaux au sous-espace noyau N de Y. Pour que la distribution soit involutive il faut donc que le crochet de Lie de 2 quelconques des y^\dagger_k soit orthogonal au noyau :

$$\forall k, m \quad N^T \left[y^\dagger_k, y^\dagger_m \right] = 0$$

Si c’est le cas, les TME (trajectoires à motricité effective) seraient incluses dans une variété différentiable M de dimension 3 orthogonale en tout point au noyau de Y. Les TME seraient alors les trajectoires intersection de cette variété différentiable et de la pré-image H^{N-2} de $h(t) : \sigma_e(t) = M \cap H^{N-2}$.

Evaluons $N^T \left[y^\dagger_k, y^\dagger_m \right]$:

$$\left[y^\dagger_k, y^\dagger_m \right] = \left[\left(\sum_{i=1}^{3} \lambda_{ik}(t) l_i \right), \left(\sum_{j=1}^{3} \lambda_{jm}(t) l_j \right) \right]$$

1. On appelle distribution de champs de vecteurs le sous-espace vectoriel engendré par les vecteurs de ces champs au point considéré.

2. Une distribution de champs de vecteurs est involutive si elle est stable par crochet de Lie (théorème de Frobenius) c’est-à-dire quand tous les crochets de Lie de deux de ses vecteurs appartiennent à la distribution.
\[
N^T \left[y_k^+, y_m^+ \right] = N^T \sum_{i=1}^{3} \sum_{j=1}^{3} \lambda_{ik}(t) \lambda_{jm}(t) [l_i, l_j] \\
+ N^T \sum_{i=1}^{3} \sum_{j=1}^{3} \lambda_{ik}(t) (l_j \nabla^T \lambda_{jm}(t)) N^T l_i \\
- \sum_{i=1}^{3} \sum_{j=1}^{3} \lambda_{jm}(t) (l_i \nabla^T \lambda_{ik}(t)) N^T l_j
\]

Or \(N^T l_i = N^T l_j = 0 \), d'où :

\[
N^T \left[y_k^+, y_m^+ \right] = \sum_{i=1}^{3} \sum_{j=1}^{3} \lambda_{ik}(t) \lambda_{jm}(t) N^T [l_i, l_j]
\]

Les \(\lambda_{ij}(t) \) étant des éléments d'une matrice régulière, pour que \(N^T [l_i, l_j] = 0 \), il faut et il suffit que \(N^T [l_i, l_j] = 0 \).

En conclusion, pour que les TME soient inclus dans une variété différentiable de dimension 3, il faut et il suffit que les crochets de Lie des lignes de \(Y \) soient orthogonaux au noyau de \(Y \).

7.1.2 Cas de la pyramide isotrope

Examinons sous quelle conditions les crochets de Lie des vecteurs lignes \(l_i \) de \(Y \) sont orthogonaux au noyau dans le cas de la pyramide isotrope.

\[
l_1 = \begin{pmatrix} -a \cos \sigma_1 \\ \sin \sigma_2 \\ a \cos \sigma_3 \\ -\sin \sigma_4 \end{pmatrix} \quad l_2 = \begin{pmatrix} -\sin \sigma_1 \\ -a \cos \sigma_2 \\ \sin \sigma_3 \\ a \cos \sigma_4 \end{pmatrix} \quad l_3 = \begin{pmatrix} b \cos \sigma_1 \\ b \cos \sigma_2 \\ b \cos \sigma_3 \\ b \cos \sigma_4 \end{pmatrix}
\]

Les jacobis de ces vecteurs s'écrit :

\[
\frac{\partial l_1}{\partial \sigma} = \begin{pmatrix} a \sin \sigma_1 & 0 & 0 & 0 \\ 0 & \cos \sigma_2 & 0 & 0 \\ 0 & 0 & -a \sin \sigma_3 & 0 \\ 0 & 0 & 0 & -\cos \sigma_4 \end{pmatrix}
\]

\[
\frac{\partial l_2}{\partial \sigma} = \begin{pmatrix} -\cos \sigma_1 & 0 & 0 & 0 \\ 0 & a \sin \sigma_2 & 0 & 0 \\ 0 & 0 & \cos \sigma_3 & 0 \\ 0 & 0 & 0 & -a \sin \sigma_4 \end{pmatrix}
\]

\[
\frac{\partial l_3}{\partial \sigma} = -b \begin{pmatrix} \sin \sigma_1 & 0 & 0 & 0 \\ 0 & \sin \sigma_2 & 0 & 0 \\ 0 & 0 & \sin \sigma_3 & 0 \\ 0 & 0 & 0 & \sin \sigma_4 \end{pmatrix}
\]

D'où les crochets de Lie :

\[
[l_1, l_2] = \frac{\partial l_2}{\partial \sigma} l_1 - \frac{\partial l_1}{\partial \sigma} l_2 = a \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}
\]
7.1 Trajectoires cycliques stables

\[
[l_2, l_3] = \frac{\partial l_1}{\partial \sigma} l_2 - \frac{\partial l_2}{\partial \sigma} l_3 = b \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}
\]

\[
[l_3, l_1] = \frac{\partial l_1}{\partial \sigma} l_3 - \frac{\partial l_3}{\partial \sigma} l_1 = b \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}
\]

Ces trois vecteurs constants définissent un hyperplan orthogonal au vecteur \((1, -1, 1, -1)^T\). Le noyau de \(Y\) ne peut être orthogonal à cet hyperplan que dans le cas très particulier où il est en permanence aligné avec \((1, -1, 1, -1)^T\). Il en résulte que dans le cas de la pyramide isotrope, les trajectoires à motricité effective ne sont pas incluses dans une sous-variété différentiable de dimension 3. Ceci a pour conséquence que la \(TME\) \(\sigma_e(t)\) associée à une trajectoire fermée \(h(t)\) est a priori ouverte, avec une configuration terminale a priori différente de la configuration initiale.

Les trajectoires cycliques stables (TCS)

Examinons les cas particulier des trajectoires qui sont telles que le noyau est en permanence aligné avec \((1, -1, 1, -1)^T\). Pour ces trajectoires il y a involutivité de la distribution des vecteurs \(l_i\). Nous les nommerons *trajectoires cycliques stables* (TCS). Elles sont définies par les 3 équations :

\[
|y_2y_3y_4| = |y_1y_3y_4| = |y_1y_2y_4| = |y_1y_2y_3|
\]

Il est plus simple d’écrire que pour ces trajectoires les 3 lignes \(l_i\) sont orthogonales au vecteur \((1, -1, 1, -1)^T\), d’où :

\[
Y(\sigma) = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

Si nous posons :

\[
s(\sigma) = Y(\sigma) \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}
\]

les TCS s’écrivent simplement :

\[
s(\sigma) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

Or en effectuant la substitution suivante :

\[
\sigma_1 = \sigma'_1 - \frac{\pi}{2}
\]

\[
\sigma_2 = \sigma'_2 + \frac{\pi}{2}
\]

\[
\sigma_3 = \sigma'_3 - \frac{\pi}{2}
\]

\[
\sigma_4 = \sigma'_4 + \frac{\pi}{2}
\]
il vient :

\[s(\sigma) = X(\sigma') \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = h(\sigma') = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \]

La substitution transforme les équations des TCS (fonction des \(\sigma \)) en équations des TMN centrales en fonction des \(\sigma' \). En effectuant la transformation inverse on obtient les équations explicites de 4 TCS :

\[
\begin{align*}
tcs_01 &= (\alpha, -\alpha, \alpha, -\alpha) \\
tcs_02 &= (\alpha, \alpha, \alpha, \alpha) \\
tcs_03 &= (\alpha, \alpha - \frac{2\pi}{3}, \frac{2\pi}{3} - \alpha, -\alpha) \\
tcs_04 &= (\alpha, -\alpha, -\alpha - \frac{2\pi}{3}, \alpha + \frac{2\pi}{3})
\end{align*}
\]

où nous avons effectué un changement de paramètre pour avoir systématiquement \(\sigma_1 = \alpha \).

7.2 Traversabilité des singularités

Considérons la configuration singulière \(\sigma^s \), associée à la direction \(u \) telle que \(u^T Y(\sigma^s) \). Dans cette configuration on a \(u^T Y(\sigma^s) = 0 \). On dira que la surface singulière \(H^s \) est traversable en ce point s’il existe des variations élémentaires de configuration qui font quitter la surface singulière et qui sont telles que le scalaire :

\[-Q = u^T \frac{dh}{dt} \]

puisse être positif pour une variation et négatif pour une autre.

Remarque : Dans tout ce qui suit la configuration est singulière : \(\sigma = \sigma^s \). Il en résulte que \(y_i = y_i(\sigma^s_i) = y^i \), \(Y = Y(\sigma^s) = Y^s \), \(x_i = x_i(\sigma^s_i) = x^i \), \(X = X(\sigma^s) = X^s \), etc. Pour alléger les notations nous omettrons l’exposant \(s \) sur ces termes.

Au premier ordre, on a \(-Q = u^T Y \frac{dh}{dt} = 0 \), puisque \(u^T Y \frac{dh}{dt} = u^T Y d\sigma \) et que par définition de \(\sigma^s \) et \(u \), on a \(u^T Y(\sigma^s) = 0 \).

En développant au deuxième ordre, on obtient :

\[
\begin{align*}
\frac{dh}{dt} &= \frac{1}{2} \sum_{i=1}^N \frac{d^2 x_i}{d\sigma_i^2} d\sigma_i^2 = \frac{1}{2} \sum_{i=1}^N \frac{dy_i}{d\sigma_i} d\sigma_i^2 \\
\frac{dh}{dt} &= -\frac{1}{2} \sum_{i=1}^N x_i d\sigma_i^2 = -\frac{1}{2} X d\sigma_i^2
\end{align*}
\]

(7.1)

d'où au deuxième ordre :

\[Q = \frac{1}{2} u^T X d\sigma^2 \]

Posons :

\[q_i = \frac{1}{p_i} = u^T x_i \]

Il vient :

\[Q = \frac{1}{2} \sum_{i=1}^N q_i d\sigma_i^2 \]
7.2 Traversabilité des singularités

Or ε_i = signe (q_i). Il en résulte (ce qui est évident physiquement) que les surfaces singulières \(\mathcal{H}^s \) externes sont intraversables (\(\varepsilon_i \) tous de même signe), puisqu’elles donnent un signe constant à Q quel que soit \(d\sigma \).

Qu’en est-il des surfaces singulières internes ? Le fait que la signature présente des changements de signe est insuffisant pour conclure. En effet, on peut trouver une variation \(d\sigma \) qui reste dans la surface singulière et qui fasse changer le signe de \(Q \), alors que toutes les variations \(d\sigma \) qui font quitter la surface singulière conservent un signe constant à s, ce qui fait que la surface n’est pas traversée.

L’application \(h(\sigma) \) réalise une transformation entre l’espace de configuration \(\Sigma^N \) et l’espace \(\mathbb{H}^3 \) des moments cinétiques \(Y \). En toute configuration \(\sigma \), l’espace tangent \(T_\sigma (\mathbb{H}^3) \) des \(d\sigma \) est lié à l’espace tangent \(T_\sigma (\Sigma^N) \) des moments cinétiques différents \(d\sigma \) par l’application linéaire \(Y \).

L’espace tangent \(T_\sigma (\mathbb{H}^3) \) peut-être partitionné en deux sous-espaces supplémentaires orthogonaux, l’espace \(\ker(Y) \) (c’est-à-dire noyau de \(Y \)) engendré par les vecteurs \(n_k \) tels \(Y n_k \) (vecteurs orthogonaux aux lignes de \(Y \)) et le sous-espace complémentaire \(\text{Im}(Y^T) \), engendré par les 3 lignes de \(Y \):

\[T_\sigma (\mathbb{H}^3) = \ker(Y) \oplus \text{Im}(Y^T) \]

En une configuration régulière, \(\text{Im}(Y^T) \) est de dimension 3 et \(\ker(Y) \) est de dimension \(N - 3 \).

En une configuration singulière \(\text{Im}(Y^T) \) est de dimension \(< 3 \) puisqu’il existe une combinaison linéaire des 3 lignes de \(Y \) dont les coefficients sont les composantes du vecteur \(u_i \). Nous supposerons que la grappe est bien conçue et qu’il n’y a pas de configuration telle que les \(N \) vecteurs \(y_i \) soient colinéaires. Dans ces conditions la dimension de \(\text{Im}(Y^T) \) est 2 et celle de \(\ker(Y) \) est de \(N - 2 \).

Notons \(T_{\sigma^r} (\Sigma^r) \) le sous-espace tangent en \(\sigma^r \) à la surface singulière \(\Sigma^r \). Il a pour image par \(h(\sigma) \) le plan tangent à la surface singulière \(\mathcal{H}^s \).

Pour conclure sur la traversabilité de la surface singulière, il faut considérer les \(d\sigma \) qui permettent de la quitter, c’est-à-dire les \(d\sigma \) qui appartiennent à \(\ker(Y) \) et non pas les \(d\sigma \) qui appartiennent à \(T_{\sigma^r} (\Sigma^r) \) et qui maintiennent sur cette surface. Pour que la surface singulière soit traversable, il faut donc que la réduction de la forme quadratique \(Q \) au sous-espace \(\ker(Y) \) présente une signature mixte.

Or \(\ker(Y) \) et \(T_{\sigma^r} (\Sigma^r) \) étant supplémentaires \(^3\), la variation \(d\sigma \) peut être décomposée en une somme de deux vecteurs (non orthogonaux a priori):

\[d\sigma = d\sigma^r + d\sigma^n \]

avec \(d\sigma^r \in T_{\sigma^r} (\Sigma^r) \) et \(d\sigma^n \in \ker(Y) \). D’où :

\[Q = \frac{1}{2} \sum_i q_i (d\sigma_i^r)^2 + \sum_i q_id\sigma_i^r d\sigma_i^n + \frac{1}{2} \sum_i q_i (d\sigma_i^n)^2 \]

Comme \(d\sigma^r \in T_{\sigma^r} (\Sigma^r) \), on a en différentiant \(u^T y_i = 0 \), on a :

\[(d\sigma^r)^T y_i = -u^T x_i d\sigma_i^r = 0 \]

d’où :

\[d\sigma_i^r = \frac{1}{q_i} (d\sigma^r)^T y_i \]

D’où la valeur du terme central :

\[\sum_i q_id\sigma_i^r d\sigma_i^n = \sum_i q_i \frac{1}{q_i} (d\sigma^r)^T y_id\sigma_i^n = d\sigma^r \sum_i y_i d\sigma_i^n = d\sigma^r Y d\sigma^n \]

\(^3\) Je n’ai pas trouvé de présentation simple permettant de le prouver.
qui est nul par définition du noyau. Il en résulte que :

$$Q = Q^s + Q^n$$

avec :

$$Q^s = \frac{1}{2} \sum_i q_i (d\sigma_i^s)^2$$

et

$$Q^n = \frac{1}{2} \sum_i q_i (d\sigma_i^n)^2$$

Ainsi la forme quadratique totale se décompose en une somme de deux formes quadratiques qui sont sa réduction Q^s au sous espace tangent $T_{\sigma^s} (\Sigma')$ et sa réduction Q^n au sous-espace noyau.

Pour que la surface singulière soit traversable, il faut que la réduction Q^n puisse prendre un signe positif et négatif, c’est-à-dire que le produit π^n de ses valeurs propres soit négatif. Essayons de déduire π^n du signe de la forme quadratique Q^s. La loi d’inertie de Sylvester implique que le signe du produit πq des q_i est égal au signe du produit des produits πs et πn des valeurs propres des formes quadratiques réduites dans les deux sous espaces supplémentaires :

$$\text{signe}(\pi^q) = \text{signe}(\pi^s \pi^n) \rightarrow \text{signe}(\pi^n) = \text{signe}(\pi^q / \pi^s)$$

Il en résulte que la surface singulière sera traversable si et seulement si :

$$\text{signe}(\pi^n / \pi^s) < 0$$

π^n s’obtient immédiatement à partir de la signature de σ^s. Voyons comment calculer π^s.

$$Q^s = \frac{1}{2} \sum_i q_i \frac{1}{q_i} (du)^T y_i \frac{1}{q_i} y_i^T (du)$$

$$Q^s = \frac{1}{2} (du)^T \left(\sum_i \frac{1}{q_i} y_i y_i^T \right) (du)$$

soit en posant :

$$J = \sum_i \frac{1}{q_i} y_i y_i^T$$

$$Q^s = \frac{1}{2} (du)^T J (du)$$

(7.2)

Comme les y_i sont orthogonaux à u (on est en configuration singulière de direction u), la matrice J est un projecteur (non orthogonal) sur le plan orthogonal à u. Les du engendrant un sous-espace orthogonal à u, le signe de Q^s est donc celui de la forme quadratique de matrice J, réduite au sous espace orthogonal à u. J a une valeur propre nulle de vecteur propre u. π^s est donc égal au produit de ses deux valeurs propres λ_1 et λ_2 associées à deux vecteurs propres orthogonaux (car J est symétrique) v_1 et v_2 dans le plan normal à u.

Considérons l’opérateur $P = uu^T + J$, c’est un opérateur symétrique dont la partie uu^T projette sur u et la partie J projette sur le plan normal à u. Il à 1 pour valeur propre associé à u et λ_1 et λ_2 associées à v_1 et v_2. On a donc :

$$\det(P) = 1 \times \lambda_1 \times \lambda_2 = \pi^s$$

En posant $w_i = \frac{1}{q_i} y_i$ pour $i = 1$ à N et en introduisant les vecteurs $w_{N+1} = y_{N+1} = u$, l’opérateur P s’écrit :

$$P = \sum_{i=1}^{N+1} w_i y_i^T$$

Réf. DCSD-2009_008-NOT-005-1.0
En appliquant la formule de Binet-Cauchy à P on obtient :

$$\det(P) = \sum_{i<j<k} |w_i w_j w_k| |y_i y_j y_k|$$

Or tous les triplets de vecteurs qui ne contiennent pas les vecteurs $w_{N+1} = y_{N+1} = u$ sont coplanaires. Il en résulte que :

$$\det(P) = \sum_{i<j} |w_i w_j u| |y_i y_j u|$$

ou encore :

$$\pi^s = \sum_{i<j} \frac{1}{q_i q_j} \|y_i \times y_j\|^2$$

(7.3)

Remarque : Nous montrons ci-après que π^s est égal à l’inverse de la courbure de Gauss 4 de la surface singulière H^s en $h(\sigma^s)$. Cette remarque n’est pas très productive car la relation (7.3) donnant est plus facile à mettre en oeuvre que le calcul classique de la courbure de Gauss.

Première forme quadratique fondamentale de la surface singulière H^s

Evaluons $dh^s = \sum y_i d\sigma^s$. Or $d\sigma^s = \frac{1}{q_i} (du)^T y_i$ implique :

$$dh^s = \sum_{i=1}^N \frac{1}{q_i} y_i (du)^T$$

soit en utilisant la matrice symétrique J définie par (7.2) :

$$dh^s = J (du)$$

(7.4)

La première forme quadratique fondamentale de la surface singulière H^s est définie par :

$$I = ds^2 = ||dh^s||^2$$

soit, compte tenu de la symétrie de J :

$$I = dh^T dh^s = du^T J^2 du$$

Deuxième forme quadratique fondamentale de la surface singulière H^s

La deuxième forme quadratique fondamentale de H^s est définie par le produit scalaire de l’élément différentiel de la surface dh^s par l’élément différentiel de la normale unitaire à la surface qui n’est autre que du (puisque u est unitaire et normal à la surface) :

$$II = dh^T du = du^T J du$$

La courbure de la surface dans la direction dh^s associée à du est donnée par :

$$\kappa = \frac{II}{I}$$

Les 2 extréums K_1 et K_2 sont appelés les courbures principales.

Courbure de Gauss de la surface singulière H^s

4. La courbure de Gauss d’une surface est égal au rapport des deuxième et première forme quadratique fondamentale qui est égal au produit des courbures principales.
La courbure de Gauss est le produit des courbures principales :

\[k = k_1 k_2 = \frac{\det(II)}{\det(I)} \]

Or :

\[\frac{\det(II)}{\det(I)} = \frac{\det(J_{\perp u})}{\det(J_{\parallel u})} = \frac{1}{\det(J_{\perp u})} \]

où \(J_{\perp u} \) représente la réduction de \(J \) à son sous-espace image orthogonal à \(u \) :

\[J_{\perp u} = \begin{bmatrix} v_1 & v_2 \end{bmatrix}^T T \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \]

d'où :

\[k = \frac{1}{\pi^2} \]

7.3 Test de la méthode du gradient

Les figures qui suivent illustrent l’incapacité des méthodes qui maximisent localement le déterminant pour tenter d’éviter les singularités internes. Ces figures sont relatives à la production d’un moment cinétique \(h x_0 \) pour \(h \) variant de 0 au maximum possible, pour des configurations de départ situées sur la TMN\(\theta_0 \) dans l’intervalle \(\sigma_1 \in (-\frac{\pi}{6}, \frac{\pi}{6}) \).

Sur la figure 7.1 nous avons représenté l’évolution du déterminant (en ordonnée \(z \)) en fonction du niveau \(h \) de la TMN atteinte (en abscisse \(x \)) et de la coordonnée \(\sigma_1 \) (en abscisse \(y \)). Au niveau de la TMN \(h = 0 \), le point A représente le point de départ (\(\sigma_1 = 0 \)) où le déterminant \(\Delta \) présente un maximum local. La trajectoire ABC’E’F’H’ est la trajectoire à motricité effective qui conduit à la singularité : \(h = 1.15 \), \(\sigma_1 = -\frac{\pi}{2}, \Delta = 0 \). C’est également la trajectoire suivie par la méthode du gradient au départ du point A. Si on applique cette méthode, au départ d’un point situé dans l’intervalle \(\sigma_1 = (-\frac{\pi}{6}, 0) \), la maximisation progressive du gradient va amener la trajectoire vers la crête AB. Ensuite, la portion de trajectoire C’E’F’H’ est dans une vallée où le gradient étant orthogonal aux TMN, il ne permet pas de la quitter (ce qui est le cas pour un départ exact du point A). Mais si le point est légèrement à droite du creux de la vallée, il va avoir tendance à remonter vers la crête \(C_1E_1F_1H_1 \). Mais cette crête conduit également à la même singularité interne.

La figure 7.2 montre l’autre coté de la vallée C’E’F’H’ qui monte en se refermant comme une vague au dessus de la vallée. Les points issus de l’intervalle \(\sigma_1 = (0, \frac{\pi}{6}) \) vont avoir tendance à monter vers la crête AB, puis ensuite vers la crête \(C_2E_2F_2H_2 \) qui elle aussi conduit à la même singularité interne.

Les graphes de la figure 7.3 montrent des orbites complètes de quelques TMN.

— Pour \(h = 0.01 \) (voisinage immédiat de la TMN\(\theta_0 \)), on a fait figurer un point voisin de A (maximum local avec \(\Delta \simeq 1.2 \)). Pour cette valeur, l’orbite de la TMN\(\theta_0 \) a fait jonction avec les 3 autres orbites TMN\(\theta_A, TMN\theta_B \) et TMN\(\theta_C \) ce qui explique les maximums de \(\Delta \) au delà de 2.

— Pour \(h = 0.54 \) la crête AB se termine dans une vallée, le point B est encore situé sur une toute petite bosse.

— Pour \(h = 0.57 \) le point C’ est dans la vallée, et les points C\(\ell \) et C\(\ell \) sont sur les deux crêtes adjacentes.

— Pour \(h = 0.75 \) le point E’ est dans la vallée, et les points E\(\ell \) et E\(\ell \) sont sur les deux crêtes adjacentes.

— Pour \(h = 0.95 \) le point F’ est dans la vallée, et les points F\(\ell \) et F\(\ell \) sont sur les deux crêtes adjacentes.
— Pour $h = 1.15$ le point H’ est dans la vallée, et les points H₁ et H₂ sont sur les deux crêtes adjacentes. Cette dernière orbite est de très faible amplitude avec $0.003 < \Delta < 0.019$. Elle est proche du cul-de-sac que constitue le point singulier.

On peut constater une brusque variation d’allure dans l’intervalle des h variant de 0.95 à 1.15. Les graphes de la figure 7.4 montrent les orbites complètes des TMN situées dans cet intervalle. Elles se déforment progressivement pour h variant de 0.98 à 1.13. Les graphes de la figure 7.5 montrent les orbites complètes des TMN situées dans les derniers intervalles. Entre $h = 1.1402$ et $h = 1.1404$ l’orbite représentée en $h = 1.1402$ est rejointe par une autre pour constituer une orbite beaucoup plus longue. A partir de $h = 1.1408$ la grande orbite se scinde de nouveau et il ne subsiste que le prolongement de l’ancienne orbite (elle se présente sur la tranche, ce qui explique qu’elle semble ouverte) qui correspond à la portion située en bas à droite de l’orbite du graphe $h = 1.1406$. La liaison avec la grande orbite ne dure que pour h variant de 1.1404 à 1.1406. Pour $h = 1.1410$ on est dans le cul-de-sac final.

On ne peut pas voir s’il n’y a pas une possibilité d’échappement par la méthode du gradient pour h variant de 1.1404 à 1.1406, car c’est une zone chaotique pour laquelle tous les indicateurs varient avec une très grande vitesse, ce qui gêne leur évaluation. Pour trouver un éventuel passage, il faudrait qu’une itération de la méthode tombe dans cet intervalle, mais il est si réduit que cette possibilité est hautement improbable.

7.4 Test des méthodes gain inverse
Figure 7.1 – Surface engendrée par les TMN \(h_0 \) (1ère portion)
FIGURE 7.2 – Surface engendrée par les TMN $h\theta_0$ (2ème portion)
FIGURE 7.3 – Quelques TMN $h\alpha_0$ (1ère série)
7.4 Test des méthodes gain inverse

Figure 7.4 – Quelques TMN h_{x_0} (2ème série)
FIGURE 7.5 – Quelques TMN $h\alpha_0$ (3ème série)
Figure 7.6 – Momentcinétique maximal atteint selon \(x_0\) en fonction de \(\sigma_1\) sur la TMN_{00}
Figure 7.7 – Trajectoires en configuration productrices d’un moment selon x_0
7.4 TEST DES MÉTHODES GAIN INVERSE

FIGURE 7.8 – Trajectoires en configuration productrices d’un moment selon x_0

Réf. DCSD-2009_008-NOT-005-1.0

Page 85/92
FICHER 7.9 – Moment cinétique maximal atteint selon x_0 en fonction de σ sur la TMN.
7.4 Test des méthodes gain inverse

Figure 7.10 – Trajectoires en configuration productrices d’un moment selon x_0
H selon Oz₀ en déterminant inverse 1

État de départ (degrés) pour \(\sigma = (\alpha, -\alpha, \alpha, -\alpha)^T \)

Figure 7.11 – Moment cinétique maximal atteint selon z₀ en fonction de \(\sigma \) sur la TMN₀.
7.4 Test des méthodes gain inverse

Figure 7.12 – Moment cinétique maximal atteint selon z_0 en fonction de σ sur la TMN0.
Bibliographie

